AI Agents¶
Overview¶
AIDDDMAP employs a sophisticated multi-agent system where specialized AI agents collaborate to handle different aspects of data management, curation, and marketplace operations. Each agent has specific responsibilities and capabilities, coordinated by a central Steering Librarian.
Agent Architecture¶
interface BaseAgent {
id: string;
type: AgentType;
status: "idle" | "processing" | "error";
capabilities: string[];
process(input: any): Promise<any>;
handleError(error: Error): void;
}
enum AgentType {
FINDER = "finder",
CURATOR = "curator",
VALUATOR = "valuator",
TREND_ANALYZER = "trend_analyzer",
PUBLISHER = "publisher",
QUALITY_ASSESSOR = "quality_assessor",
LIBRARIAN = "librarian",
}
Core Agents¶
1. DataFinder AI¶
Purpose: Discovers and locates relevant datasets based on user criteria.
interface DataFinderAgent extends BaseAgent {
searchCriteria: {
keywords: string[];
dataTypes: string[];
dateRange?: {
start: Date;
end: Date;
};
};
findDatasets(criteria: SearchCriteria): Promise<Dataset[]>;
rankResults(datasets: Dataset[]): Promise<RankedDataset[]>;
suggestRelated(dataset: Dataset): Promise<Dataset[]>;
}
Example Usage:
const finder = new DataFinderAgent({
type: AgentType.FINDER,
capabilities: ["semantic_search", "similarity_ranking"],
});
const datasets = await finder.findDatasets({
keywords: ["health", "fitness"],
dataTypes: ["timeseries", "metrics"],
});
2. DataCurator AI¶
Purpose: Prepares and enhances datasets for marketplace listing.
interface DataCuratorAgent extends BaseAgent {
supportedFormats: string[];
enhancementCapabilities: string[];
standardizeFormat(data: any): Promise<any>;
enrichMetadata(dataset: Dataset): Promise<Dataset>;
validateSchema(dataset: Dataset): Promise<ValidationResult>;
}
Example Usage:
const curator = new DataCuratorAgent({
type: AgentType.CURATOR,
capabilities: ["format_conversion", "metadata_enhancement"],
});
const enhancedDataset = await curator.enrichMetadata(rawDataset);
3. ValuationAI¶
Purpose: Determines fair market value for datasets.
interface ValuationAgent extends BaseAgent {
marketData: MarketMetrics;
calculateValue(dataset: Dataset): Promise<ValuationResult>;
analyzeDemand(dataset: Dataset): Promise<DemandMetrics>;
suggestPricing(dataset: Dataset): Promise<PricingStrategy>;
}
interface ValuationResult {
estimatedValue: number;
confidence: number;
factors: {
quality: number;
uniqueness: number;
demand: number;
completeness: number;
};
}
4. TrendAnalysis AI¶
Purpose: Analyzes market trends and provides insights.
interface TrendAnalysisAgent extends BaseAgent {
timeframe: "daily" | "weekly" | "monthly";
analyzeMarketTrends(): Promise<MarketTrends>;
predictDemand(dataset: Dataset): Promise<DemandPrediction>;
generateInsights(data: MarketData): Promise<MarketInsights>;
}
5. Publishing AI¶
Purpose: Manages the dataset publication process.
interface PublishingAgent extends BaseAgent {
publishingQueue: Dataset[];
publishDataset(dataset: Dataset): Promise<PublishResult>;
trackStatus(datasetId: string): Promise<PublishStatus>;
handleErrors(error: PublishError): Promise<Resolution>;
}
6. Data Quality Assessment AI¶
Purpose: Evaluates and validates dataset quality.
interface QualityAssessmentAgent extends BaseAgent {
metrics: QualityMetrics[];
assessQuality(dataset: Dataset): Promise<QualityReport>;
validateIntegrity(dataset: Dataset): Promise<ValidationResult>;
suggestImprovements(dataset: Dataset): Promise<Improvements[]>;
}
interface QualityReport {
score: number;
metrics: {
completeness: number;
accuracy: number;
consistency: number;
timeliness: number;
};
issues: Issue[];
recommendations: string[];
}
7. Steering Librarian¶
Purpose: Coordinates all agents and maintains system knowledge.
interface SteeringLibrarian extends BaseAgent {
agents: BaseAgent[];
knowledgeBase: KnowledgeBase;
coordinateAgents(task: Task): Promise<void>;
updateKnowledge(data: any): Promise<void>;
optimizeWorkflow(workflow: Workflow): Promise<OptimizedWorkflow>;
}
Agent Communication¶
Agents communicate through an event-driven system:
interface AgentMessage {
from: string;
to: string;
type: MessageType;
payload: any;
timestamp: Date;
}
enum MessageType {
REQUEST = "request",
RESPONSE = "response",
ERROR = "error",
STATUS_UPDATE = "status_update",
}
Example of inter-agent communication:
// DataFinder requesting quality assessment
await messageBus.send({
from: "finder_agent",
to: "quality_agent",
type: MessageType.REQUEST,
payload: {
action: "assess_quality",
dataset: foundDataset,
},
});
Agent Deployment¶
Agents can be deployed through the UADM:
interface AgentDeployment {
agent: BaseAgent;
config: UADMConfig;
resources: ResourceRequirements;
}
const deployment = await uadm.deployAgent({
agent: new DataFinderAgent(),
config: {
hardwareAbstraction: {
protocols: ["http", "websocket"],
deviceTypes: ["server"],
},
security: {
encryption: true,
permissions: ["read_data", "search_index"],
},
},
});
Best Practices¶
- Error Handling
try {
await agent.process(data);
} catch (error) {
await agent.handleError(error);
await SteeringLibrarian.notifyError(error);
}
- Resource Management
const resources = await agent.checkResources();
if (resources.available) {
await agent.process(data);
} else {
await agent.queueTask(data);
}
- Performance Optimization
// Use caching for frequent operations
const cachedResult = await cache.get(operationKey);
if (cachedResult) {
return cachedResult;
}
Integration Examples¶
1. IDAT Integration¶
// Drag-and-drop agent to canvas
idat.onAgentDrop(async (agent: BaseAgent, position: Position) => {
const node = await idat.createAgentNode(agent, position);
await SteeringLibrarian.registerNode(node);
});
2. Marketplace Integration¶
// Publishing workflow
const workflow = new AgentWorkflow()
.addStep(qualityAgent.assessQuality)
.addStep(valuationAgent.calculateValue)
.addStep(publishingAgent.publishDataset);
await workflow.execute(dataset);