Data Assembly¶
Overview¶
Data Assembly in AIDDDMAP is primarily handled through the Interactive Data Assembly Tool (IDAT), a sophisticated visual workspace that allows users to create, modify, and manage data workflows. The system combines drag-and-drop functionality with AI agent assistance to streamline the data preparation and publishing process.
IDAT Canvas¶
Architecture¶
interface IDATPanelConfig {
dimensions: {
width: number;
height: number;
};
grid: {
size: number;
snap: boolean;
};
theme: {
background: string;
gridColor: string;
nodeColors: Record<string, string>;
};
}
interface IDATPanelState {
nodes: Node[];
edges: Edge[];
selectedElements: (Node | Edge)[];
mode: "select" | "connect" | "pan";
}
Node Types¶
interface BaseNode {
id: string;
type: NodeType;
position: { x: number; y: number };
data: any;
}
enum NodeType {
DATASET = "dataset",
AGENT = "agent",
TRANSFORM = "transform",
OUTPUT = "output",
}
// Dataset Node
interface DatasetNode extends BaseNode {
type: NodeType.DATASET;
data: {
name: string;
schema: SchemaDefinition;
preview: DataPreview;
metadata: DatasetMetadata;
};
}
// Agent Node
interface AgentNode extends BaseNode {
type: NodeType.AGENT;
data: {
agent: BaseAgent;
status: AgentStatus;
configuration: AgentConfig;
};
}
Workflow Creation¶
1. Visual Assembly¶
// Example of creating a workflow
const workflow = new DataWorkflow({
name: "Health Data Processing",
description: "Process and analyze health metrics",
});
// Add nodes
workflow.addNode({
type: NodeType.DATASET,
data: {
name: "Raw Health Data",
source: "fitness_tracker",
},
});
workflow.addNode({
type: NodeType.AGENT,
data: {
agent: new DataCuratorAgent(),
configuration: {
cleansingRules: ["remove_nulls", "standardize_dates"],
},
},
});
2. Node Connections¶
interface Edge {
id: string;
source: string;
target: string;
type: EdgeType;
data?: {
transformation?: TransformationRule[];
validation?: ValidationRule[];
};
}
enum EdgeType {
DATA_FLOW = "data_flow",
CONTROL_FLOW = "control_flow",
FEEDBACK = "feedback",
}
3. Data Transformations¶
interface TransformationRule {
type: "map" | "filter" | "reduce" | "aggregate";
config: {
input: string[];
output: string[];
operation: string;
parameters: Record<string, any>;
};
}
// Example transformation
const transformation = {
type: "map",
config: {
input: ["heart_rate", "timestamp"],
output: ["avg_heart_rate"],
operation: "moving_average",
parameters: {
window_size: 5,
},
},
};
Real-time Processing¶
1. Live Data Handling¶
interface LiveDataConfig {
source: DataSource;
bufferSize: number;
updateInterval: number;
errorHandling: ErrorHandlingStrategy;
}
class LiveDataHandler {
constructor(config: LiveDataConfig) {
this.buffer = new CircularBuffer(config.bufferSize);
this.interval = config.updateInterval;
}
async processIncomingData(data: any): Promise<void> {
await this.buffer.add(data);
await this.notifySubscribers(data);
}
}
2. State Management¶
interface WorkflowState {
status: "idle" | "processing" | "error";
progress: number;
activeNodes: string[];
errors: WorkflowError[];
metrics: {
processedItems: number;
throughput: number;
latency: number;
};
}
Integration with AI Agents¶
1. Agent Deployment¶
// Deploy an agent to the workflow
const agentNode = await workflow.deployAgent({
agent: new DataCuratorAgent(),
position: { x: 300, y: 200 },
configuration: {
mode: "automatic",
triggers: ["new_data", "schema_change"],
},
});
2. Agent Communication¶
interface AgentMessage {
type: "command" | "status" | "result";
payload: any;
timestamp: Date;
}
// Example of agent interaction
agentNode.on("data", async (data: any) => {
const result = await agentNode.agent.process(data);
workflow.updateNode(agentNode.id, { result });
});
Data Quality & Validation¶
1. Schema Validation¶
interface SchemaValidation {
rules: ValidationRule[];
onError: (error: ValidationError) => void;
autoFix: boolean;
}
interface ValidationRule {
field: string;
type: "required" | "format" | "range" | "custom";
parameters: any;
}
2. Quality Metrics¶
interface QualityMetrics {
completeness: number;
accuracy: number;
consistency: number;
timeliness: number;
custom: Record<string, number>;
}
Best Practices¶
1. Performance Optimization¶
// Implement data streaming for large datasets
const stream = new DataStream({
batchSize: 1000,
parallel: true,
maxConcurrency: 4,
});
stream.on("data", async (batch) => {
await workflow.processBatch(batch);
});
2. Error Handling¶
try {
await workflow.execute();
} catch (error) {
if (error instanceof ValidationError) {
await workflow.handleValidationError(error);
} else if (error instanceof ProcessingError) {
await workflow.retry({
maxAttempts: 3,
backoff: "exponential",
});
}
}
3. Resource Management¶
const resources = new ResourceManager({
maxMemory: "4GB",
maxConcurrency: 8,
timeout: 30000,
});
workflow.setResourceConstraints(resources);
Example Workflows¶
1. Data Preparation Pipeline¶
const pipeline = new DataPipeline()
.addSource(new DatasetNode("raw_data"))
.addTransformation(new CleansingNode())
.addAgent(new DataCuratorAgent())
.addValidation(new QualityCheckNode())
.addDestination(new OutputNode("processed_data"));
await pipeline.execute();
2. Real-time Analytics¶
const realtimeWorkflow = new RealTimeWorkflow()
.setSource(
new StreamingSource({
type: "websocket",
url: "ws://data-stream",
}),
)
.addProcessing(
new WindowedAggregation({
window: "5m",
operation: "average",
}),
)
.addVisualization(new LiveDashboard());