Skip to content

Multi-Agent System Architecture

Overview

The AIDDDMAP platform implements a sophisticated multi-agent system that enables autonomous data management, processing, and marketplace interactions. This document outlines the core concepts, components, and interactions within the multi-agent ecosystem.

Core Components

1. Agent Types

Data Collection Agents

  • Monitor and collect data from various sources
  • Validate data quality and integrity
  • Generate ZK proofs for data authenticity
  • Handle data preprocessing and normalization

Processing Agents

  • Execute data transformations
  • Perform analytics and generate insights
  • Manage secure computation workflows
  • Handle batch and stream processing

Marketplace Agents

  • Facilitate data trading and exchange
  • Manage pricing and valuation
  • Handle transaction verification
  • Monitor market dynamics

Security Agents

  • Enforce access control policies
  • Monitor system security
  • Generate and verify cryptographic proofs
  • Manage key distribution

Agent Architecture

1. Base Agent Structure

interface BaseAgent {
  id: string;
  type: AgentType;
  capabilities: string[];
  status: AgentStatus;
  metadata: AgentMetadata;
}

interface AgentMetadata {
  created: number;
  lastActive: number;
  version: string;
  permissions: string[];
}

2. Agent Communication

interface AgentMessage {
  from: string;
  to: string;
  type: MessageType;
  payload: any;
  timestamp: number;
  signature?: string;
}

enum MessageType {
  REQUEST = "request",
  RESPONSE = "response",
  BROADCAST = "broadcast",
  ALERT = "alert",
}

Agent Coordination

1. Task Distribution

interface Task {
  id: string;
  type: TaskType;
  priority: number;
  requirements: TaskRequirement[];
  deadline?: number;
  status: TaskStatus;
}

interface TaskRequirement {
  capability: string;
  minAgents: number;
  preferences?: AgentPreference[];
}

2. Consensus Mechanism

interface ConsensusProposal {
  proposalId: string;
  proposer: string;
  action: ProposedAction;
  votes: AgentVote[];
  threshold: number;
  deadline: number;
}

interface AgentVote {
  agentId: string;
  vote: boolean;
  signature: string;
  timestamp: number;
}

Security Integration

1. Agent Authentication

interface AgentCredentials {
  id: string;
  publicKey: string;
  certificate: string;
  permissions: string[];
  signature: string;
}

2. Secure Communication

interface SecureChannel {
  id: string;
  participants: string[];
  encryptionKey: string;
  established: number;
  lastUsed: number;
}

Performance Optimization

1. Load Balancing

interface LoadMetrics {
  agentId: string;
  cpu: number;
  memory: number;
  taskCount: number;
  lastUpdated: number;
}

2. Resource Management

interface ResourceAllocation {
  agentId: string;
  resources: {
    cpu: number;
    memory: number;
    storage: number;
  };
  constraints: ResourceConstraint[];
}

Monitoring and Logging

1. Agent Metrics

interface AgentMetrics {
  id: string;
  timestamp: number;
  performance: {
    taskCompletion: number;
    responseTime: number;
    errorRate: number;
  };
  resources: {
    cpuUsage: number;
    memoryUsage: number;
    networkUsage: number;
  };
}

2. System Health

interface SystemHealth {
  timestamp: number;
  activeAgents: number;
  pendingTasks: number;
  resourceUtilization: number;
  alerts: SystemAlert[];
}

Integration Examples

1. Data Processing Pipeline

// Configure data processing workflow
const workflow = new AgentWorkflow({
  steps: [
    {
      type: "collection",
      agents: ["collector-1", "collector-2"],
      config: {
        source: "sensor-network",
        interval: 5000,
      },
    },
    {
      type: "processing",
      agents: ["processor-1"],
      config: {
        operations: ["normalize", "aggregate"],
        batch: {
          size: 1000,
          timeout: 30000,
        },
      },
    },
    {
      type: "marketplace",
      agents: ["market-maker-1"],
      config: {
        pricing: "dynamic",
        minValue: 100,
      },
    },
  ],
});

2. Security Workflow

// Configure security workflow
const securityWorkflow = new AgentWorkflow({
  steps: [
    {
      type: "security",
      agents: ["security-1"],
      config: {
        operations: ["generate-proof", "verify-access"],
        requirements: {
          proofType: "zk-snark",
          accessLevel: "confidential",
        },
      },
    },
    {
      type: "audit",
      agents: ["audit-1"],
      config: {
        logLevel: "detailed",
        retention: "30d",
      },
    },
  ],
});

Best Practices

1. Agent Design

  • Keep agents focused and specialized
  • Implement proper error handling
  • Use secure communication channels
  • Maintain audit logs

2. System Architecture

  • Design for scalability
  • Implement redundancy
  • Use proper authentication
  • Monitor system health

3. Performance

  • Optimize resource usage
  • Implement caching
  • Use efficient communication patterns
  • Regular performance testing

Future Enhancements

  1. Planned Features

  2. Advanced AI capabilities

  3. Improved consensus mechanisms
  4. Enhanced security features
  5. Better resource optimization

  6. Research Areas

  7. Agent learning algorithms
  8. Distributed consensus
  9. Security protocols
  10. Resource allocation strategies