Multi-Agent System Architecture¶
Overview¶
The AIDDDMAP platform implements a sophisticated multi-agent system that enables autonomous data management, processing, and marketplace interactions. This document outlines the core concepts, components, and interactions within the multi-agent ecosystem.
Core Components¶
1. Agent Types¶
Data Collection Agents¶
- Monitor and collect data from various sources
- Validate data quality and integrity
- Generate ZK proofs for data authenticity
- Handle data preprocessing and normalization
Processing Agents¶
- Execute data transformations
- Perform analytics and generate insights
- Manage secure computation workflows
- Handle batch and stream processing
Marketplace Agents¶
- Facilitate data trading and exchange
- Manage pricing and valuation
- Handle transaction verification
- Monitor market dynamics
Security Agents¶
- Enforce access control policies
- Monitor system security
- Generate and verify cryptographic proofs
- Manage key distribution
Agent Architecture¶
1. Base Agent Structure¶
interface BaseAgent {
id: string;
type: AgentType;
capabilities: string[];
status: AgentStatus;
metadata: AgentMetadata;
}
interface AgentMetadata {
created: number;
lastActive: number;
version: string;
permissions: string[];
}
2. Agent Communication¶
interface AgentMessage {
from: string;
to: string;
type: MessageType;
payload: any;
timestamp: number;
signature?: string;
}
enum MessageType {
REQUEST = "request",
RESPONSE = "response",
BROADCAST = "broadcast",
ALERT = "alert",
}
Agent Coordination¶
1. Task Distribution¶
interface Task {
id: string;
type: TaskType;
priority: number;
requirements: TaskRequirement[];
deadline?: number;
status: TaskStatus;
}
interface TaskRequirement {
capability: string;
minAgents: number;
preferences?: AgentPreference[];
}
2. Consensus Mechanism¶
interface ConsensusProposal {
proposalId: string;
proposer: string;
action: ProposedAction;
votes: AgentVote[];
threshold: number;
deadline: number;
}
interface AgentVote {
agentId: string;
vote: boolean;
signature: string;
timestamp: number;
}
Security Integration¶
1. Agent Authentication¶
interface AgentCredentials {
id: string;
publicKey: string;
certificate: string;
permissions: string[];
signature: string;
}
2. Secure Communication¶
interface SecureChannel {
id: string;
participants: string[];
encryptionKey: string;
established: number;
lastUsed: number;
}
Performance Optimization¶
1. Load Balancing¶
interface LoadMetrics {
agentId: string;
cpu: number;
memory: number;
taskCount: number;
lastUpdated: number;
}
2. Resource Management¶
interface ResourceAllocation {
agentId: string;
resources: {
cpu: number;
memory: number;
storage: number;
};
constraints: ResourceConstraint[];
}
Monitoring and Logging¶
1. Agent Metrics¶
interface AgentMetrics {
id: string;
timestamp: number;
performance: {
taskCompletion: number;
responseTime: number;
errorRate: number;
};
resources: {
cpuUsage: number;
memoryUsage: number;
networkUsage: number;
};
}
2. System Health¶
interface SystemHealth {
timestamp: number;
activeAgents: number;
pendingTasks: number;
resourceUtilization: number;
alerts: SystemAlert[];
}
Integration Examples¶
1. Data Processing Pipeline¶
// Configure data processing workflow
const workflow = new AgentWorkflow({
steps: [
{
type: "collection",
agents: ["collector-1", "collector-2"],
config: {
source: "sensor-network",
interval: 5000,
},
},
{
type: "processing",
agents: ["processor-1"],
config: {
operations: ["normalize", "aggregate"],
batch: {
size: 1000,
timeout: 30000,
},
},
},
{
type: "marketplace",
agents: ["market-maker-1"],
config: {
pricing: "dynamic",
minValue: 100,
},
},
],
});
2. Security Workflow¶
// Configure security workflow
const securityWorkflow = new AgentWorkflow({
steps: [
{
type: "security",
agents: ["security-1"],
config: {
operations: ["generate-proof", "verify-access"],
requirements: {
proofType: "zk-snark",
accessLevel: "confidential",
},
},
},
{
type: "audit",
agents: ["audit-1"],
config: {
logLevel: "detailed",
retention: "30d",
},
},
],
});
Best Practices¶
1. Agent Design¶
- Keep agents focused and specialized
- Implement proper error handling
- Use secure communication channels
- Maintain audit logs
2. System Architecture¶
- Design for scalability
- Implement redundancy
- Use proper authentication
- Monitor system health
3. Performance¶
- Optimize resource usage
- Implement caching
- Use efficient communication patterns
- Regular performance testing
Future Enhancements¶
-
Planned Features
-
Advanced AI capabilities
- Improved consensus mechanisms
- Enhanced security features
-
Better resource optimization
-
Research Areas
- Agent learning algorithms
- Distributed consensus
- Security protocols
- Resource allocation strategies