Performance Guide¶
This guide outlines performance optimization strategies and best practices for AIDDDMAP deployments.
Performance Overview¶
1. Key Performance Indicators¶
- Response Time
- Throughput
- Resource Utilization
- Error Rates
2. Performance Goals¶
- API Response Time < 200ms
- 99.9% Uptime
- < 0.1% Error Rate
- < 70% Resource Utilization
Application Performance¶
1. Code Optimization¶
Memory Management¶
interface MemoryConfig {
heap: {
initial: "512M";
max: "1G";
newSize: "128M";
};
gc: {
type: "G1GC";
pauseTarget: "200ms";
};
}
Async Operations¶
// Efficient async handling
async function processDataset(id: string): Promise<void> {
const [metadata, permissions, stats] = await Promise.all([
getMetadata(id),
getPermissions(id),
getStats(id),
]);
await processInBackground({
metadata,
permissions,
stats,
});
}
2. Request Processing¶
Request Pipeline¶
interface RequestPipeline {
stages: {
validation: {
timeout: number;
retries: number;
};
authentication: {
cache: boolean;
timeout: number;
};
processing: {
parallel: boolean;
batchSize: number;
};
response: {
compression: boolean;
caching: boolean;
};
};
}
Rate Limiting¶
interface RateLimit {
window: string;
max: number;
strategy: "token-bucket" | "leaky-bucket";
headers: boolean;
whitelist: string[];
}
Database Performance¶
1. Query Optimization¶
Index Strategy¶
-- Create optimized indexes
CREATE INDEX idx_datasets_user_timestamp ON datasets (user_id, created_at);
CREATE INDEX idx_agents_status ON agents (status) WHERE status = 'active';
CREATE INDEX idx_data_partial ON data (type, value) WHERE processed = false;
-- Monitor index usage
SELECT schemaname, tablename, indexname, idx_scan, idx_tup_read
FROM pg_stat_user_indexes
WHERE idx_scan = 0
ORDER BY idx_tup_read DESC;
Query Tuning¶
-- Example of an optimized query
EXPLAIN ANALYZE
SELECT d.*, COUNT(a.id) as agent_count
FROM datasets d
LEFT JOIN agents a ON d.id = a.dataset_id
WHERE d.status = 'active'
AND d.created_at > NOW() - INTERVAL '7 days'
GROUP BY d.id
HAVING COUNT(a.id) > 0
ORDER BY d.created_at DESC
LIMIT 100;
2. Connection Management¶
Pool Configuration¶
interface ConnectionPool {
min: number;
max: number;
idle: number;
acquire: number;
retry: {
attempts: number;
backoff: number;
};
}
Query Monitoring¶
interface QueryMetrics {
query: string;
execution_time: number;
rows_affected: number;
cache_hit: boolean;
explain_plan: string;
}
Caching Strategy¶
1. Multi-Level Caching¶
Cache Layers¶
interface CacheLayers {
memory: {
size: number;
ttl: number;
};
redis: {
clusters: string[];
maxMemory: string;
};
cdn: {
enabled: boolean;
rules: CacheRule[];
};
}
Cache Policies¶
interface CachePolicy {
strategy: "write-through" | "write-behind";
ttl: number;
maxSize: number;
eviction: "lru" | "lfu";
}
2. Cache Invalidation¶
Invalidation Strategy¶
interface InvalidationStrategy {
mode: "immediate" | "delayed";
pattern: string;
cascade: boolean;
notification: {
enabled: boolean;
channel: string;
};
}
Cache Monitoring¶
cache_metrics:
hit_rate:
warning: 0.8
critical: 0.6
memory_usage:
warning: 80
critical: 90
eviction_rate:
warning: 100
critical: 1000
Network Optimization¶
1. Content Delivery¶
CDN Configuration¶
interface CDNConfig {
provider: string;
regions: string[];
caching: {
default_ttl: number;
rules: {
pattern: string;
ttl: number;
}[];
};
optimization: {
minify: boolean;
compress: boolean;
cache_everything: boolean;
};
}
Response Compression¶
interface CompressionConfig {
enabled: boolean;
level: 1 | 2 | 3 | 4 | 5;
threshold: number;
types: string[];
}
2. Load Balancing¶
Backend Configuration¶
load_balancer:
algorithm: least_connections
health_check:
path: /health
interval: 10s
timeout: 5s
healthy_threshold: 2
unhealthy_threshold: 3
backends:
- name: api-1
weight: 100
max_conns: 1000
- name: api-2
weight: 100
max_conns: 1000
Resource Optimization¶
1. CPU Optimization¶
Worker Configuration¶
Task Scheduling¶
task_scheduler:
queues:
high_priority:
concurrency: 10
rate_limit: 1000
background:
concurrency: 5
rate_limit: 100
2. Memory Management¶
Memory Limits¶
interface MemoryLimits {
heap: {
min: string;
max: string;
};
cache: {
size: string;
items: number;
};
buffers: {
size: string;
pooling: boolean;
};
}
Garbage Collection¶
gc_config:
algorithm: G1GC
pause_target: 200ms
region_size: 1M
heap_occupancy: 45%
logging:
enabled: true
file: /var/log/gc.log
rotation: daily
Performance Monitoring¶
1. Metrics Collection¶
System Metrics¶
metrics:
system:
cpu:
- usage
- load
- context_switches
memory:
- usage
- swap
- page_faults
disk:
- iops
- latency
- throughput
network:
- bandwidth
- packets
- errors
Application Metrics¶
interface AppMetrics {
requests: {
total: number;
active: number;
queued: number;
};
response_time: {
p50: number;
p95: number;
p99: number;
};
errors: {
count: number;
rate: number;
};
}
2. Performance Alerts¶
Alert Rules¶
alerts:
- name: high_response_time
condition: p95_latency > 500ms
duration: 5m
severity: warning
- name: error_spike
condition: error_rate > 1%
duration: 1m
severity: critical
- name: memory_pressure
condition: memory_usage > 85%
duration: 10m
severity: warning
Best Practices¶
1. Development¶
- Profile code regularly
- Optimize database queries
- Implement efficient caching
- Use async operations
2. Database¶
- Maintain indexes
- Monitor query performance
- Use connection pooling
- Implement sharding
3. Caching¶
- Implement multi-level caching
- Use appropriate TTLs
- Monitor hit rates
- Plan invalidation
4. Monitoring¶
- Track key metrics
- Set up alerts
- Monitor trends
- Regular profiling
Next Steps¶
- Review current performance
- Implement caching strategy
- Optimize database queries
- Configure monitoring
- Set up alerts
Support¶
Need help with performance?
- Check our Scaling Guide
- Contact Performance Team
- Join our Discord community