Scaling Guide¶
This guide outlines strategies and best practices for scaling AIDDDMAP deployments.
Scaling Overview¶
1. Scaling Dimensions¶
- Vertical Scaling (Up/Down)
- Horizontal Scaling (Out/In)
- Data Scaling
- Geographic Distribution
2. Key Metrics¶
- Request Latency
- Resource Utilization
- Error Rates
- Throughput
Infrastructure Scaling¶
1. Application Scaling¶
Container Orchestration¶
# docker-compose.yml
version: "3.8"
services:
api:
image: aidddmap/api
deploy:
replicas: 3
resources:
limits:
cpus: "0.5"
memory: 512M
update_config:
parallelism: 1
delay: 10s
restart_policy:
condition: on-failure
Load Balancing¶
# nginx.conf
upstream api_servers {
least_conn; # Load balancing method
server api1.aidddmap.com:8000;
server api2.aidddmap.com:8000;
server api3.aidddmap.com:8000;
keepalive 32;
}
server {
listen 80;
server_name api.aidddmap.com;
location / {
proxy_pass http://api_servers;
proxy_http_version 1.1;
proxy_set_header Connection "";
}
}
2. Database Scaling¶
Connection Pooling¶
// database-config.ts
export const poolConfig = {
min: 5,
max: 20,
idle: 10000,
acquire: 30000,
evict: 30000,
};
Read Replicas¶
database:
primary:
host: db-primary.aidddmap.com
role: write
replicas:
- host: db-replica-1.aidddmap.com
role: read
- host: db-replica-2.aidddmap.com
role: read
Application Optimization¶
1. Caching Strategy¶
Cache Configuration¶
interface CacheConfig {
redis: {
clusters: [
{
host: string;
port: number;
role: "primary" | "replica";
},
];
maxConnections: number;
ttl: number;
};
local: {
size: number;
ttl: number;
};
}
Cache Policies¶
interface CachePolicy {
type: "write-through" | "write-behind" | "cache-aside";
ttl: number;
invalidation: {
strategy: "time-based" | "event-based";
events?: string[];
};
}
2. Queue Management¶
Queue Configuration¶
interface QueueConfig {
name: string;
concurrency: number;
attempts: number;
backoff: {
type: "exponential" | "fixed";
delay: number;
};
priority: 1 | 2 | 3;
}
Job Processing¶
interface JobProcessor {
process: (job: Job) => Promise<void>;
onFailed: (job: Job, err: Error) => void;
onCompleted: (job: Job, result: any) => void;
rateLimiter: {
max: number;
duration: number;
};
}
Data Management¶
1. Data Partitioning¶
Sharding Configuration¶
interface ShardConfig {
strategy: "hash" | "range" | "directory";
shardKey: string;
numberOfShards: number;
replicationFactor: number;
}
Partition Management¶
partitioning:
datasets:
strategy: hash
key: dataset_id
shards: 4
users:
strategy: range
key: created_at
ranges:
- start: "2023-01-01"
end: "2023-06-30"
- start: "2023-07-01"
end: "2023-12-31"
2. Data Migration¶
Migration Strategy¶
interface MigrationStrategy {
type: "online" | "offline";
batchSize: number;
validation: boolean;
rollback: {
enabled: boolean;
threshold: number;
};
}
Data Verification¶
interface DataVerification {
checksums: boolean;
sampleSize: number;
validations: {
integrity: boolean;
consistency: boolean;
performance: boolean;
};
}
Performance Monitoring¶
1. Metrics Collection¶
System Metrics¶
metrics:
collection:
interval: 10s
retention: 30d
system:
- cpu_usage
- memory_usage
- disk_io
- network_traffic
application:
- request_rate
- error_rate
- response_time
- queue_length
Performance Alerts¶
alerts:
- name: high_cpu_usage
condition: cpu > 80%
duration: 5m
severity: warning
- name: high_latency
condition: p95_latency > 500ms
duration: 10m
severity: critical
2. Performance Testing¶
Load Test Configuration¶
interface LoadTest {
duration: string;
users: number;
rampUp: string;
scenarios: {
name: string;
weight: number;
flow: string[];
}[];
thresholds: {
http_req_duration: ["p95<500"];
http_req_failed: ["rate<0.01"];
};
}
Performance Benchmarks¶
benchmarks:
api_endpoints:
- path: /api/v1/datasets
method: GET
p95_latency: 200ms
max_rps: 1000
- path: /api/v1/agents
method: POST
p95_latency: 500ms
max_rps: 100
Geographic Distribution¶
1. Multi-Region Deployment¶
Region Configuration¶
regions:
us-east:
primary: true
services:
- api
- worker
- database
eu-west:
primary: false
services:
- api
- worker
- database-replica
Traffic Routing¶
interface RoutingConfig {
strategy: "latency" | "geolocation" | "weighted";
fallback: string;
healthChecks: {
path: string;
interval: number;
timeout: number;
unhealthyThreshold: number;
};
}
2. Data Replication¶
Replication Strategy¶
interface ReplicationStrategy {
mode: "sync" | "async";
priority: number;
conflicts: "primary-wins" | "last-write-wins";
monitoring: {
lag: number;
alerts: boolean;
};
}
Best Practices¶
1. Architecture¶
- Design for horizontal scaling
- Implement microservices
- Use asynchronous processing
- Cache effectively
2. Data Management¶
- Partition data appropriately
- Implement efficient indexes
- Use connection pooling
- Monitor query performance
3. Operations¶
- Automate scaling operations
- Monitor system metrics
- Implement graceful degradation
- Plan for failure
4. Testing¶
- Conduct load testing
- Verify scaling behavior
- Test failure scenarios
- Benchmark performance
Next Steps¶
- Review current metrics
- Implement caching strategy
- Configure load balancing
- Plan data partitioning
- Set up monitoring
Support¶
Need help with scaling?
- Check our Performance Guide
- Contact DevOps Team
- Join our Discord community