Skip to content

Performance Optimization

Overview

AIDDDMAP implements various performance optimization strategies to handle large datasets, complex computations, and real-time data processing efficiently. This guide covers the key optimization features and best practices for maintaining high performance across the platform.

Data Processing Optimizations

Chunked Processing

const CHUNK_SIZE = 100;
const MAX_DISPLAY_POINTS = 1000;

// Example of chunked data processing
async function processDataChunks(data: FitnessDataPoint[]) {
  const chunks = [];
  for (let i = 0; i < data.length; i += CHUNK_SIZE) {
    chunks.push(data.slice(i, i + CHUNK_SIZE));
  }

  const results = [];
  for (const chunk of chunks) {
    const processed = await processChunk(chunk);
    results.push(...processed);
  }

  return results;
}

Features:

  • Configurable chunk sizes
  • Memory usage optimization
  • Progress tracking
  • Error recovery per chunk
  • Performance monitoring

Batch Operations

interface BatchConfig {
  maxBatchSize: number;
  concurrency: number;
  retryAttempts: number;
  timeout: number;
}

// Example of batch processing
async function processBatch(items: any[], config: BatchConfig) {
  const batches = [];
  for (let i = 0; i < items.length; i += config.maxBatchSize) {
    batches.push(items.slice(i, i + config.maxBatchSize));
  }

  return Promise.all(
    batches.map((batch) => processBatchWithRetry(batch, config)),
  );
}

Features:

  • Parallel processing
  • Configurable batch sizes
  • Automatic retries
  • Timeout handling
  • Progress monitoring

Memory Management

State Management

// Example of optimized state management
function updateState(newData: FitnessDataPoint[]) {
  setFitnessData((prev) => {
    const combined = [...prev, ...newData];
    // Keep only the most recent points for visualization
    return combined.slice(-MAX_DISPLAY_POINTS);
  });
}

Features:

  • Efficient state updates
  • Memory usage limits
  • Automatic cleanup
  • Performance monitoring
  • Cache management

Resource Optimization

interface ResourceConfig {
  memoryLimit: number;
  cpuThreshold: number;
  cleanupInterval: number;
}

// Example of resource monitoring
class ResourceMonitor {
  async checkResources(config: ResourceConfig) {
    const metrics = await getSystemMetrics();
    if (metrics.memory > config.memoryLimit) {
      await this.cleanup();
    }
    if (metrics.cpu > config.cpuThreshold) {
      await this.optimizeProcessing();
    }
  }
}

Features:

  • Resource usage monitoring
  • Automatic cleanup
  • Performance thresholds
  • Alert system
  • Optimization triggers

Encryption Performance

FHE Optimization

interface FHEConfig {
  scheme: "BFV" | "CKKS";
  securityLevel: number;
  polyModulusDegree: number;
  plainModulus?: number;
}

// Example of optimized FHE setup
const fheHandler = new FHEHandler({
  scheme: "BFV",
  securityLevel: 128,
  polyModulusDegree: 4096,
  plainModulus: 1024,
});

Features:

  • Parameter optimization
  • Memory usage control
  • Batch encryption
  • Performance monitoring
  • Hardware acceleration support

ZK Proof Optimization

interface ZKConfig {
  proofType: "range" | "equality" | "membership";
  constraints: number;
  optimization: "speed" | "memory" | "balanced";
}

// Example of optimized ZK proof generation
async function generateOptimizedProof(data: any, config: ZKConfig) {
  const circuit = await optimizeCircuit(data, config);
  return generateProof(circuit);
}

Features:

  • Circuit optimization
  • Constraint minimization
  • Proof caching
  • Parallel verification
  • Memory efficiency

Network Optimization

Data Streaming

interface StreamConfig {
  bufferSize: number;
  compression: boolean;
  batchInterval: number;
}

// Example of optimized data streaming
class DataStream {
  async streamData(data: AsyncIterator<any>, config: StreamConfig) {
    const buffer = [];
    for await (const chunk of data) {
      buffer.push(chunk);
      if (buffer.length >= config.bufferSize) {
        await this.processBatch(buffer);
        buffer.length = 0;
      }
    }
  }
}

Features:

  • Buffered streaming
  • Compression
  • Batch processing
  • Error handling
  • Progress tracking

Connection Management

interface ConnectionConfig {
  poolSize: number;
  timeout: number;
  keepAlive: boolean;
  retryStrategy: RetryConfig;
}

// Example of connection pool management
class ConnectionPool {
  async getConnection(config: ConnectionConfig) {
    const connection = await this.pool.acquire();
    try {
      await this.validateConnection(connection);
      return connection;
    } catch (error) {
      await this.handleConnectionError(error);
    }
  }
}

Features:

  • Connection pooling
  • Automatic reconnection
  • Load balancing
  • Error recovery
  • Performance monitoring

Best Practices

1. Data Processing

  • Use appropriate chunk sizes based on data type
  • Implement batch processing for bulk operations
  • Monitor memory usage and cleanup regularly
  • Implement proper error handling and recovery
  • Use progress tracking for long operations

2. State Management

  • Limit state size for UI components
  • Implement efficient update mechanisms
  • Use appropriate data structures
  • Clean up unused resources
  • Monitor performance metrics

3. Network Operations

  • Use connection pooling
  • Implement retry mechanisms
  • Compress data when appropriate
  • Monitor network performance
  • Handle errors gracefully

4. Encryption Operations

  • Choose appropriate encryption parameters
  • Use batch encryption when possible
  • Implement caching strategies
  • Monitor encryption performance
  • Optimize proof generation

Performance Monitoring

1. Metrics Collection

interface PerformanceMetrics {
  memory: {
    used: number;
    total: number;
    peak: number;
  };
  cpu: {
    usage: number;
    load: number;
  };
  network: {
    bandwidth: number;
    latency: number;
  };
  encryption: {
    throughput: number;
    latency: number;
  };
}

2. Alerting

interface AlertConfig {
  memoryThreshold: number;
  cpuThreshold: number;
  latencyThreshold: number;
  actions: AlertAction[];
}

3. Optimization Triggers

interface OptimizationTrigger {
  metric: keyof PerformanceMetrics;
  threshold: number;
  action: OptimizationAction;
}

Future Improvements

1. Processing Optimizations

  • Enhanced parallel processing
  • Improved memory management
  • Advanced caching strategies
  • Better resource utilization
  • Hardware acceleration

2. Encryption Optimizations

  • FHE parameter optimization
  • ZK circuit optimization
  • Improved key management
  • Enhanced batch processing
  • Hardware acceleration support

3. Network Optimizations

  • Advanced protocol support
  • Improved compression
  • Better connection management
  • Enhanced error recovery
  • Performance monitoring tools