Performance Optimization¶
Overview¶
AIDDDMAP implements various performance optimization strategies to handle large datasets, complex computations, and real-time data processing efficiently. This guide covers the key optimization features and best practices for maintaining high performance across the platform.
Data Processing Optimizations¶
Chunked Processing¶
const CHUNK_SIZE = 100;
const MAX_DISPLAY_POINTS = 1000;
// Example of chunked data processing
async function processDataChunks(data: FitnessDataPoint[]) {
const chunks = [];
for (let i = 0; i < data.length; i += CHUNK_SIZE) {
chunks.push(data.slice(i, i + CHUNK_SIZE));
}
const results = [];
for (const chunk of chunks) {
const processed = await processChunk(chunk);
results.push(...processed);
}
return results;
}
Features:
- Configurable chunk sizes
- Memory usage optimization
- Progress tracking
- Error recovery per chunk
- Performance monitoring
Batch Operations¶
interface BatchConfig {
maxBatchSize: number;
concurrency: number;
retryAttempts: number;
timeout: number;
}
// Example of batch processing
async function processBatch(items: any[], config: BatchConfig) {
const batches = [];
for (let i = 0; i < items.length; i += config.maxBatchSize) {
batches.push(items.slice(i, i + config.maxBatchSize));
}
return Promise.all(
batches.map((batch) => processBatchWithRetry(batch, config)),
);
}
Features:
- Parallel processing
- Configurable batch sizes
- Automatic retries
- Timeout handling
- Progress monitoring
Memory Management¶
State Management¶
// Example of optimized state management
function updateState(newData: FitnessDataPoint[]) {
setFitnessData((prev) => {
const combined = [...prev, ...newData];
// Keep only the most recent points for visualization
return combined.slice(-MAX_DISPLAY_POINTS);
});
}
Features:
- Efficient state updates
- Memory usage limits
- Automatic cleanup
- Performance monitoring
- Cache management
Resource Optimization¶
interface ResourceConfig {
memoryLimit: number;
cpuThreshold: number;
cleanupInterval: number;
}
// Example of resource monitoring
class ResourceMonitor {
async checkResources(config: ResourceConfig) {
const metrics = await getSystemMetrics();
if (metrics.memory > config.memoryLimit) {
await this.cleanup();
}
if (metrics.cpu > config.cpuThreshold) {
await this.optimizeProcessing();
}
}
}
Features:
- Resource usage monitoring
- Automatic cleanup
- Performance thresholds
- Alert system
- Optimization triggers
Encryption Performance¶
FHE Optimization¶
interface FHEConfig {
scheme: "BFV" | "CKKS";
securityLevel: number;
polyModulusDegree: number;
plainModulus?: number;
}
// Example of optimized FHE setup
const fheHandler = new FHEHandler({
scheme: "BFV",
securityLevel: 128,
polyModulusDegree: 4096,
plainModulus: 1024,
});
Features:
- Parameter optimization
- Memory usage control
- Batch encryption
- Performance monitoring
- Hardware acceleration support
ZK Proof Optimization¶
interface ZKConfig {
proofType: "range" | "equality" | "membership";
constraints: number;
optimization: "speed" | "memory" | "balanced";
}
// Example of optimized ZK proof generation
async function generateOptimizedProof(data: any, config: ZKConfig) {
const circuit = await optimizeCircuit(data, config);
return generateProof(circuit);
}
Features:
- Circuit optimization
- Constraint minimization
- Proof caching
- Parallel verification
- Memory efficiency
Network Optimization¶
Data Streaming¶
interface StreamConfig {
bufferSize: number;
compression: boolean;
batchInterval: number;
}
// Example of optimized data streaming
class DataStream {
async streamData(data: AsyncIterator<any>, config: StreamConfig) {
const buffer = [];
for await (const chunk of data) {
buffer.push(chunk);
if (buffer.length >= config.bufferSize) {
await this.processBatch(buffer);
buffer.length = 0;
}
}
}
}
Features:
- Buffered streaming
- Compression
- Batch processing
- Error handling
- Progress tracking
Connection Management¶
interface ConnectionConfig {
poolSize: number;
timeout: number;
keepAlive: boolean;
retryStrategy: RetryConfig;
}
// Example of connection pool management
class ConnectionPool {
async getConnection(config: ConnectionConfig) {
const connection = await this.pool.acquire();
try {
await this.validateConnection(connection);
return connection;
} catch (error) {
await this.handleConnectionError(error);
}
}
}
Features:
- Connection pooling
- Automatic reconnection
- Load balancing
- Error recovery
- Performance monitoring
Best Practices¶
1. Data Processing¶
- Use appropriate chunk sizes based on data type
- Implement batch processing for bulk operations
- Monitor memory usage and cleanup regularly
- Implement proper error handling and recovery
- Use progress tracking for long operations
2. State Management¶
- Limit state size for UI components
- Implement efficient update mechanisms
- Use appropriate data structures
- Clean up unused resources
- Monitor performance metrics
3. Network Operations¶
- Use connection pooling
- Implement retry mechanisms
- Compress data when appropriate
- Monitor network performance
- Handle errors gracefully
4. Encryption Operations¶
- Choose appropriate encryption parameters
- Use batch encryption when possible
- Implement caching strategies
- Monitor encryption performance
- Optimize proof generation
Performance Monitoring¶
1. Metrics Collection¶
interface PerformanceMetrics {
memory: {
used: number;
total: number;
peak: number;
};
cpu: {
usage: number;
load: number;
};
network: {
bandwidth: number;
latency: number;
};
encryption: {
throughput: number;
latency: number;
};
}
2. Alerting¶
interface AlertConfig {
memoryThreshold: number;
cpuThreshold: number;
latencyThreshold: number;
actions: AlertAction[];
}
3. Optimization Triggers¶
interface OptimizationTrigger {
metric: keyof PerformanceMetrics;
threshold: number;
action: OptimizationAction;
}
Future Improvements¶
1. Processing Optimizations¶
- Enhanced parallel processing
- Improved memory management
- Advanced caching strategies
- Better resource utilization
- Hardware acceleration
2. Encryption Optimizations¶
- FHE parameter optimization
- ZK circuit optimization
- Improved key management
- Enhanced batch processing
- Hardware acceleration support
3. Network Optimizations¶
- Advanced protocol support
- Improved compression
- Better connection management
- Enhanced error recovery
- Performance monitoring tools