Skip to content

Audio Processing Capabilities

Overview

AIDDDMAP's audio processing system provides comprehensive capabilities for analyzing, processing, and generating audio data. The system supports speech recognition, audio analysis, sound event detection, and music processing.

Core Features

1. Speech Processing

  • Automatic Speech Recognition (ASR)
  • Speaker Identification
  • Language Detection
  • Emotion Recognition

2. Audio Analysis

  • Sound Event Detection
  • Audio Classification
  • Acoustic Scene Analysis
  • Audio Quality Assessment

3. Music Processing

  • Music Information Retrieval
  • Beat Detection
  • Chord Recognition
  • Melody Extraction

4. Audio Enhancement

  • Noise Reduction
  • Speech Enhancement
  • Audio Restoration
  • Sound Separation

Implementation

1. Audio Configuration

interface AudioConfig {
  mode: AudioMode;
  models: ModelConfig[];
  processing: ProcessingConfig;
  output: OutputConfig;
}

interface ModelConfig {
  type: ModelType;
  path: string;
  parameters: ModelParameters;
  optimization?: OptimizationConfig;
}

enum ModelType {
  ASR = "asr",
  CLASSIFICATION = "classification",
  ENHANCEMENT = "enhancement",
  CUSTOM = "custom",
}

2. Audio Processing

interface AudioProcessor {
  preprocessing: PreprocessingConfig;
  features: FeatureConfig;
  analysis: AnalysisConfig;
}

interface PreprocessingConfig {
  sampleRate: number;
  channels: number;
  normalization: boolean;
  filtering: FilterConfig[];
}

interface FeatureConfig {
  type: "mfcc" | "mel" | "stft";
  parameters: FeatureParameters;
  transforms: Transform[];
}

3. Speech Recognition

interface ASRConfig {
  model: string;
  language: string;
  beam: number;
  vocabulary?: string[];
  acoustic?: AcousticConfig;
}

interface ASRResult {
  text: string;
  confidence: number;
  timestamps: TimeSegment[];
  metadata: ASRMetadata;
}

interface TimeSegment {
  text: string;
  start: number;
  end: number;
  confidence: number;
}

Audio Pipeline

1. Input Processing

interface InputProcessor {
  source: AudioSource;
  preprocessing: PreprocessingStep[];
  validation: ValidationRule[];
}

interface PreprocessingStep {
  operation: "resample" | "normalize" | "filter";
  parameters: any;
}

2. Feature Extraction

interface FeatureExtractor {
  features: Feature[];
  configuration: ExtractorConfig;
  transforms: Transform[];
}

interface Feature {
  type: FeatureType;
  parameters: FeatureParams;
  postprocessing?: PostProcessing[];
}

3. Model Inference

interface AudioInference {
  model: AudioModel;
  batch: BatchConfig;
  acceleration: AccelerationConfig;
}

interface AudioModel {
  architecture: string;
  weights: string;
  config: ModelConfig;
  optimization: OptimizationConfig;
}

Integration Examples

1. Speech Recognition System

// Configure speech recognition
const recognizer = new SpeechRecognizer({
  model: {
    type: "transformer",
    path: "wav2vec2-base",
    language: "en",
  },
  processing: {
    sampleRate: 16000,
    channels: 1,
    features: {
      type: "mfcc",
      numFeatures: 80,
    },
  },
  decoding: {
    beam: 5,
    lmWeight: 0.5,
    wordScore: 1.0,
  },
  output: {
    format: "json",
    include: ["text", "confidence", "timestamps"],
  },
});

// Process audio
const transcription = await recognizer.transcribe({
  audio: audioData,
  config: {
    realtime: false,
    punctuation: true,
    diarization: true,
  },
});

2. Audio Event Detection

// Configure event detector
const eventDetector = new AudioEventDetector({
  model: {
    type: "cnn",
    path: "yamnet",
    classes: ["speech", "music", "vehicle", "animal"],
  },
  processing: {
    windowSize: 1024,
    hopSize: 512,
    features: {
      type: "mel",
      numBands: 64,
    },
  },
  detection: {
    threshold: 0.5,
    minDuration: 0.1,
    overlap: 0.5,
  },
});

// Detect events
const events = await eventDetector.detect({
  audio: audioStream,
  config: {
    continuous: true,
    callback: (event) => {
      console.log(`Detected ${event.label} at ${event.timestamp}`);
    },
  },
});

3. Music Analysis

// Configure music analyzer
const musicAnalyzer = new MusicAnalyzer({
  analysis: {
    tempo: {
      enabled: true,
      range: [60, 200],
    },
    key: {
      enabled: true,
      profile: "krumhansl",
    },
    chord: {
      enabled: true,
      vocabulary: "triads",
    },
    melody: {
      enabled: true,
      polyphonic: true,
    },
  },
  processing: {
    frameSize: 2048,
    hopSize: 512,
    sampleRate: 44100,
  },
});

// Analyze music
const analysis = await musicAnalyzer.analyze({
  audio: musicFile,
  requirements: {
    tempo: true,
    key: true,
    chord: true,
    melody: true,
  },
});

Performance Optimization

1. Hardware Acceleration

interface AccelerationConfig {
  device: "CPU" | "GPU" | "DSP";
  precision: "FP32" | "FP16" | "INT8";
  batchSize: number;
  threads: number;
}

2. Model Optimization

interface OptimizationConfig {
  quantization: QuantizationConfig;
  pruning: PruningConfig;
  distillation: DistillationConfig;
}

Best Practices

1. Audio Processing

  • Proper sample rate conversion
  • Channel handling
  • Noise reduction
  • Quality validation

2. Model Selection

  • Choose appropriate architectures
  • Consider resource constraints
  • Balance accuracy and latency
  • Regular model updates

3. Deployment

  • Resource optimization
  • Error handling
  • Performance monitoring
  • Version control

Future Enhancements

  1. Planned Features

  2. Multi-speaker ASR

  3. Advanced audio enhancement
  4. Real-time processing
  5. Custom model training

  6. Research Areas

  7. End-to-end speech processing
  8. Neural audio synthesis
  9. Cross-modal learning
  10. Low-resource ASR