Skip to content

Live Data Handler

Overview

The Live Data Handler is a core component of AIDDDMAP that manages real-time data processing, streaming analytics, and event-driven operations. It provides robust capabilities for handling high-throughput data streams while ensuring data integrity and low latency.

Core Features

1. Stream Processing

  • Real-time Data Ingestion
  • Stream Analytics
  • Event Processing
  • Data Transformation

2. Data Management

  • Buffer Management
  • Flow Control
  • Data Persistence
  • State Management

3. Performance Features

  • Low Latency Processing
  • High Throughput
  • Scalable Architecture
  • Load Balancing

4. Integration Support

  • Multiple Data Sources
  • Protocol Support
  • Custom Handlers
  • Event Broadcasting

Implementation

1. Handler Configuration

interface HandlerConfig {
  streams: StreamConfig[];
  processing: ProcessingConfig;
  persistence: PersistenceConfig;
  monitoring: MonitoringConfig;
}

interface StreamConfig {
  source: DataSource;
  format: DataFormat;
  schema: SchemaConfig;
  validation: ValidationConfig;
}

enum DataFormat {
  JSON = "json",
  BINARY = "binary",
  PROTOBUF = "protobuf",
  CUSTOM = "custom",
}

2. Stream Processing

interface StreamProcessor {
  pipeline: PipelineStage[];
  analytics: AnalyticsConfig;
  output: OutputConfig;
}

interface PipelineStage {
  type: StageType;
  config: StageConfig;
  transformation: TransformConfig;
}

interface AnalyticsConfig {
  windows: WindowConfig[];
  metrics: MetricConfig[];
  alerts: AlertConfig[];
}

3. State Management

interface StateManager {
  storage: StorageConfig;
  replication: ReplicationConfig;
  recovery: RecoveryConfig;
}

interface StorageConfig {
  type: StorageType;
  persistence: PersistenceConfig;
  optimization: OptimizationConfig;
}

interface ReplicationConfig {
  strategy: ReplicationStrategy;
  nodes: number;
  consistency: ConsistencyLevel;
}

Integration Examples

1. Stream Processing Setup

// Configure stream processor
const streamProcessor = new StreamProcessor({
  input: {
    sources: [
      {
        type: "kafka",
        topic: "sensor-data",
        config: {
          brokers: ["localhost:9092"],
          group: "processor-group",
          autoCommit: false,
        },
      },
      {
        type: "websocket",
        endpoint: "ws://data-source/feed",
        protocol: "v1",
      },
    ],
    format: {
      type: "json",
      schema: sensorSchema,
      validation: true,
    },
  },
  processing: {
    pipeline: [
      {
        name: "validation",
        type: "filter",
        config: {
          rules: [
            {
              field: "temperature",
              operator: "range",
              value: [-50, 150],
            },
            {
              field: "humidity",
              operator: "range",
              value: [0, 100],
            },
          ],
        },
      },
      {
        name: "enrichment",
        type: "transform",
        config: {
          operations: [
            {
              type: "add-field",
              field: "timestamp",
              value: "now()",
            },
            {
              type: "calculate",
              field: "heat_index",
              formula: "heat_index(temperature, humidity)",
            },
          ],
        },
      },
    ],
    windows: [
      {
        type: "tumbling",
        size: "1m",
        metrics: ["avg", "max", "min"],
      },
      {
        type: "sliding",
        size: "5m",
        slide: "1m",
        metrics: ["trend"],
      },
    ],
  },
  output: {
    destinations: [
      {
        type: "elasticsearch",
        index: "sensor-metrics",
        batch: {
          size: 1000,
          interval: "10s",
        },
      },
      {
        type: "websocket",
        endpoint: "/metrics",
        format: "json",
      },
    ],
    alerts: {
      conditions: [
        {
          metric: "temperature",
          operator: "gt",
          value: 100,
          window: "5m",
        },
      ],
      notifications: ["email", "webhook"],
    },
  },
});

// Start processing
const stream = await streamProcessor.start({
  autoCommit: true,
  recovery: {
    enabled: true,
    strategy: "latest",
  },
});

2. Real-time Analytics

// Configure analytics engine
const analyticsEngine = new RealTimeAnalytics({
  processing: {
    windows: {
      types: ["tumbling", "sliding", "session"],
      default: {
        size: "1m",
        slide: "30s",
      },
    },
    metrics: {
      basic: ["count", "sum", "avg", "min", "max"],
      advanced: ["percentile", "stddev", "trend"],
    },
    aggregations: {
      dimensions: ["sensor_id", "location", "type"],
      measures: ["temperature", "humidity", "pressure"],
    },
  },
  state: {
    storage: {
      type: "memory",
      backup: {
        enabled: true,
        interval: "1m",
      },
    },
    recovery: {
      enabled: true,
      maxAge: "24h",
    },
  },
  output: {
    format: "json",
    compression: true,
    batching: {
      size: 1000,
      timeout: "5s",
    },
  },
});

// Process analytics
const analysis = await analyticsEngine.analyze({
  stream: dataStream,
  windows: [
    {
      type: "sliding",
      size: "5m",
      metrics: ["avg", "trend"],
    },
  ],
  groupBy: ["sensor_id", "location"],
});

3. Event Processing

// Configure event processor
const eventProcessor = new EventProcessor({
  events: {
    types: [
      {
        name: "temperature_alert",
        priority: "high",
        schema: temperatureSchema,
      },
      {
        name: "system_status",
        priority: "medium",
        schema: statusSchema,
      },
    ],
    routing: {
      rules: [
        {
          event: "temperature_alert",
          condition: "temperature > 100",
          action: "notify",
        },
        {
          event: "system_status",
          condition: 'status == "error"',
          action: "log",
        },
      ],
    },
  },
  processing: {
    parallel: true,
    maxWorkers: 4,
    queueSize: 1000,
  },
  handlers: {
    temperature_alert: async (event) => {
      await notificationService.send({
        type: "alert",
        severity: "high",
        message: `High temperature detected: ${event.temperature}°C`,
      });
    },
    system_status: async (event) => {
      await logger.log({
        level: "error",
        message: `System error: ${event.details}`,
        timestamp: event.timestamp,
      });
    },
  },
});

// Start event processing
const processor = await eventProcessor.start({
  autoAck: true,
  retry: {
    enabled: true,
    maxAttempts: 3,
  },
});

Performance Optimization

1. Buffer Management

interface BufferManager {
  policy: BufferPolicy;
  limits: BufferLimits;
  optimization: OptimizationConfig;
}

interface BufferPolicy {
  overflow: "drop" | "block" | "resize";
  underflow: "wait" | "flush";
}

2. Flow Control

interface FlowController {
  backpressure: BackpressureConfig;
  throttling: ThrottlingConfig;
  monitoring: MonitoringConfig;
}

Best Practices

1. Data Handling

  • Validate input data
  • Implement error handling
  • Manage backpressure
  • Monitor performance

2. Processing

  • Optimize batch sizes
  • Handle state properly
  • Implement recovery
  • Monitor latency

3. Integration

  • Use standard protocols
  • Implement retry logic
  • Handle disconnections
  • Monitor health

Future Enhancements

  1. Planned Features

  2. Advanced analytics

  3. ML integration
  4. Custom processors
  5. Enhanced monitoring

  6. Research Areas

  7. Stream processing
  8. State management
  9. Distributed processing
  10. Real-time ML