Live Data Handler¶
Overview¶
The Live Data Handler is a core component of AIDDDMAP that manages real-time data processing, streaming analytics, and event-driven operations. It provides robust capabilities for handling high-throughput data streams while ensuring data integrity and low latency.
Core Features¶
1. Stream Processing¶
- Real-time Data Ingestion
- Stream Analytics
- Event Processing
- Data Transformation
2. Data Management¶
- Buffer Management
- Flow Control
- Data Persistence
- State Management
3. Performance Features¶
- Low Latency Processing
- High Throughput
- Scalable Architecture
- Load Balancing
4. Integration Support¶
- Multiple Data Sources
- Protocol Support
- Custom Handlers
- Event Broadcasting
Implementation¶
1. Handler Configuration¶
interface HandlerConfig {
streams: StreamConfig[];
processing: ProcessingConfig;
persistence: PersistenceConfig;
monitoring: MonitoringConfig;
}
interface StreamConfig {
source: DataSource;
format: DataFormat;
schema: SchemaConfig;
validation: ValidationConfig;
}
enum DataFormat {
JSON = "json",
BINARY = "binary",
PROTOBUF = "protobuf",
CUSTOM = "custom",
}
2. Stream Processing¶
interface StreamProcessor {
pipeline: PipelineStage[];
analytics: AnalyticsConfig;
output: OutputConfig;
}
interface PipelineStage {
type: StageType;
config: StageConfig;
transformation: TransformConfig;
}
interface AnalyticsConfig {
windows: WindowConfig[];
metrics: MetricConfig[];
alerts: AlertConfig[];
}
3. State Management¶
interface StateManager {
storage: StorageConfig;
replication: ReplicationConfig;
recovery: RecoveryConfig;
}
interface StorageConfig {
type: StorageType;
persistence: PersistenceConfig;
optimization: OptimizationConfig;
}
interface ReplicationConfig {
strategy: ReplicationStrategy;
nodes: number;
consistency: ConsistencyLevel;
}
Integration Examples¶
1. Stream Processing Setup¶
// Configure stream processor
const streamProcessor = new StreamProcessor({
input: {
sources: [
{
type: "kafka",
topic: "sensor-data",
config: {
brokers: ["localhost:9092"],
group: "processor-group",
autoCommit: false,
},
},
{
type: "websocket",
endpoint: "ws://data-source/feed",
protocol: "v1",
},
],
format: {
type: "json",
schema: sensorSchema,
validation: true,
},
},
processing: {
pipeline: [
{
name: "validation",
type: "filter",
config: {
rules: [
{
field: "temperature",
operator: "range",
value: [-50, 150],
},
{
field: "humidity",
operator: "range",
value: [0, 100],
},
],
},
},
{
name: "enrichment",
type: "transform",
config: {
operations: [
{
type: "add-field",
field: "timestamp",
value: "now()",
},
{
type: "calculate",
field: "heat_index",
formula: "heat_index(temperature, humidity)",
},
],
},
},
],
windows: [
{
type: "tumbling",
size: "1m",
metrics: ["avg", "max", "min"],
},
{
type: "sliding",
size: "5m",
slide: "1m",
metrics: ["trend"],
},
],
},
output: {
destinations: [
{
type: "elasticsearch",
index: "sensor-metrics",
batch: {
size: 1000,
interval: "10s",
},
},
{
type: "websocket",
endpoint: "/metrics",
format: "json",
},
],
alerts: {
conditions: [
{
metric: "temperature",
operator: "gt",
value: 100,
window: "5m",
},
],
notifications: ["email", "webhook"],
},
},
});
// Start processing
const stream = await streamProcessor.start({
autoCommit: true,
recovery: {
enabled: true,
strategy: "latest",
},
});
2. Real-time Analytics¶
// Configure analytics engine
const analyticsEngine = new RealTimeAnalytics({
processing: {
windows: {
types: ["tumbling", "sliding", "session"],
default: {
size: "1m",
slide: "30s",
},
},
metrics: {
basic: ["count", "sum", "avg", "min", "max"],
advanced: ["percentile", "stddev", "trend"],
},
aggregations: {
dimensions: ["sensor_id", "location", "type"],
measures: ["temperature", "humidity", "pressure"],
},
},
state: {
storage: {
type: "memory",
backup: {
enabled: true,
interval: "1m",
},
},
recovery: {
enabled: true,
maxAge: "24h",
},
},
output: {
format: "json",
compression: true,
batching: {
size: 1000,
timeout: "5s",
},
},
});
// Process analytics
const analysis = await analyticsEngine.analyze({
stream: dataStream,
windows: [
{
type: "sliding",
size: "5m",
metrics: ["avg", "trend"],
},
],
groupBy: ["sensor_id", "location"],
});
3. Event Processing¶
// Configure event processor
const eventProcessor = new EventProcessor({
events: {
types: [
{
name: "temperature_alert",
priority: "high",
schema: temperatureSchema,
},
{
name: "system_status",
priority: "medium",
schema: statusSchema,
},
],
routing: {
rules: [
{
event: "temperature_alert",
condition: "temperature > 100",
action: "notify",
},
{
event: "system_status",
condition: 'status == "error"',
action: "log",
},
],
},
},
processing: {
parallel: true,
maxWorkers: 4,
queueSize: 1000,
},
handlers: {
temperature_alert: async (event) => {
await notificationService.send({
type: "alert",
severity: "high",
message: `High temperature detected: ${event.temperature}°C`,
});
},
system_status: async (event) => {
await logger.log({
level: "error",
message: `System error: ${event.details}`,
timestamp: event.timestamp,
});
},
},
});
// Start event processing
const processor = await eventProcessor.start({
autoAck: true,
retry: {
enabled: true,
maxAttempts: 3,
},
});
Performance Optimization¶
1. Buffer Management¶
interface BufferManager {
policy: BufferPolicy;
limits: BufferLimits;
optimization: OptimizationConfig;
}
interface BufferPolicy {
overflow: "drop" | "block" | "resize";
underflow: "wait" | "flush";
}
2. Flow Control¶
interface FlowController {
backpressure: BackpressureConfig;
throttling: ThrottlingConfig;
monitoring: MonitoringConfig;
}
Best Practices¶
1. Data Handling¶
- Validate input data
- Implement error handling
- Manage backpressure
- Monitor performance
2. Processing¶
- Optimize batch sizes
- Handle state properly
- Implement recovery
- Monitor latency
3. Integration¶
- Use standard protocols
- Implement retry logic
- Handle disconnections
- Monitor health
Future Enhancements¶
-
Planned Features
-
Advanced analytics
- ML integration
- Custom processors
-
Enhanced monitoring
-
Research Areas
- Stream processing
- State management
- Distributed processing
- Real-time ML