Skip to content

Natural Language Processing Capabilities

Overview

AIDDDMAP's NLP system provides advanced natural language processing capabilities for understanding, generating, and analyzing text data. The system supports multiple languages, custom model training, and integration with various data sources.

Core Features

1. Text Understanding

  • Named Entity Recognition (NER)
  • Part-of-Speech (POS) Tagging
  • Dependency Parsing
  • Semantic Role Labeling

2. Text Generation Configuration

  • Language Model Integration
  • Template-based Generation
  • Controlled Text Generation
  • Multi-lingual Support

3. Text Analysis

  • Sentiment Analysis
  • Topic Modeling
  • Text Classification
  • Relationship Extraction

4. Conversation Processing

  • Intent Recognition
  • Entity Extraction
  • Dialog Management
  • Context Tracking

Implementation

1. NLP Configuration

interface NLPConfig {
  language: string[];
  models: ModelConfig[];
  pipeline: PipelineConfig;
  output: OutputConfig;
}

interface ModelConfig {
  type: ModelType;
  path: string;
  parameters: ModelParameters;
  optimization?: OptimizationConfig;
}

enum ModelType {
  TRANSFORMER = "transformer",
  BERT = "bert",
  GPT = "gpt",
  CUSTOM = "custom",
}

2. Text Handling

interface TextProcessor {
  preprocessing: PreprocessingConfig;
  tokenization: TokenizationConfig;
  analysis: AnalysisConfig;
}

interface PreprocessingConfig {
  cleaning: boolean;
  normalization: boolean;
  language: string;
  custom?: CustomPreprocessor[];
}

interface TokenizationConfig {
  type: "wordpiece" | "bpe" | "sentencepiece";
  vocabulary: string;
  maxLength: number;
}

3. Model Pipeline

interface NLPPipeline {
  stages: PipelineStage[];
  configuration: PipelineConfig;
  optimization: OptimizationConfig;
}

interface PipelineStage {
  name: string;
  type: StageType;
  model?: ModelConfig;
  config: StageConfig;
}

Language Understanding

1. Entity Recognition

interface NERConfig {
  model: string;
  entities: string[];
  confidence: number;
  context: boolean;
}

interface NERResult {
  entities: Entity[];
  text: string;
  confidence: number;
}

interface Entity {
  text: string;
  type: string;
  start: number;
  end: number;
  confidence: number;
  metadata?: any;
}

2. Semantic Analysis

interface SemanticConfig {
  type: "classification" | "similarity" | "embedding";
  model: string;
  labels?: string[];
  threshold?: number;
}

interface SemanticResult {
  label?: string;
  score: number;
  embedding?: number[];
  confidence: number;
}

Text Generation

1. Generation Configuration

interface GenerationConfig {
  model: string;
  parameters: {
    maxLength: number;
    temperature: number;
    topK: number;
    topP: number;
    repetitionPenalty: number;
  };
  constraints?: GenerationConstraints;
}

interface GenerationConstraints {
  topics?: string[];
  style?: string;
  format?: string;
  prohibited?: string[];
}

2. Template System

interface TemplateConfig {
  templates: Template[];
  variables: Variable[];
  constraints: TemplateConstraints;
}

interface Template {
  id: string;
  text: string;
  slots: Slot[];
  metadata: TemplateMetadata;
}

Integration Examples

1. Text Analysis Pipeline

// Configure text analysis pipeline
const analyzer = new TextAnalyzer({
  pipeline: [
    {
      type: "preprocessing",
      config: {
        cleaning: true,
        normalization: true,
        language: "en",
      },
    },
    {
      type: "ner",
      model: "spacy",
      config: {
        entities: ["PERSON", "ORG", "GPE"],
        confidence: 0.5,
      },
    },
    {
      type: "classification",
      model: "bert-base",
      config: {
        labels: ["positive", "negative", "neutral"],
        threshold: 0.7,
      },
    },
  ],
  output: {
    format: "json",
    include: ["entities", "sentiment", "metadata"],
  },
});

// Process text
const analysis = await analyzer.analyze({
  text: inputText,
  requirements: {
    ner: true,
    classification: true,
  },
});

2. Text Generation

// Configure text generator
const generator = new TextGenerator({
  model: {
    type: "gpt",
    path: "gpt-neo-1.3B",
    parameters: {
      maxLength: 100,
      temperature: 0.7,
      topP: 0.9,
    },
  },
  constraints: {
    topics: ["technology", "science"],
    style: "professional",
    format: "paragraph",
  },
  output: {
    format: "markdown",
    metadata: true,
  },
});

// Generate text
const generated = await generator.generate({
  prompt: "Explain artificial intelligence",
  parameters: {
    length: 200,
    style: "educational",
  },
});

3. Conversation Processing

// Configure conversation handler
const conversationHandler = new ConversationHandler({
  intent: {
    model: "bert",
    confidence: 0.7,
    fallback: "default",
  },
  entity: {
    model: "spacy",
    types: ["product", "service", "location"],
  },
  context: {
    tracking: true,
    window: 5,
    storage: "memory",
  },
});

// Process conversation
const response = await conversationHandler.process({
  text: userInput,
  sessionId: "user123",
  context: previousContext,
});

Performance Optimization

1. Model Optimization

interface ModelOptimization {
  quantization?: {
    type: "dynamic" | "static";
    precision: "int8" | "float16";
  };
  pruning?: {
    method: "magnitude" | "structured";
    ratio: number;
  };
  distillation?: {
    teacher: string;
    temperature: number;
  };
}

2. Runtime Optimization

interface RuntimeConfig {
  batchSize: number;
  caching: CacheConfig;
  threading: ThreadConfig;
  memory: MemoryConfig;
}

Best Practices

1. Model Selection

  • Choose appropriate model size
  • Consider language requirements
  • Balance accuracy and speed
  • Regular model updates

2. Text Processing

  • Proper preprocessing
  • Handle multiple languages
  • Implement error handling
  • Maintain context

3. Deployment

  • Model optimization
  • Resource management
  • Monitoring
  • Version control

Future Enhancements

  1. Planned Features

  2. Zero-shot learning

  3. Cross-lingual transfer
  4. Improved context handling
  5. Advanced generation control

  6. Research Areas

  7. Few-shot learning
  8. Model compression
  9. Multilingual models
  10. Ethical AI