Resource Management Capabilities¶
Overview¶
AIDDDMAP's resource management system provides comprehensive capabilities for managing and optimizing system resources across the platform. The system handles compute resources, memory allocation, storage management, and network utilization.
Core Features¶
1. Resource Allocation Best Practices¶
- CPU Management
- Memory Management
- Storage Management
- Network Management
2. Workload Handling¶
- Task Scheduling
- Load Balancing
- Resource Monitoring
- Performance Optimization
3. Resource Optimization Strategies¶
- Dynamic Scaling
- Resource Pooling
- Cache Management
- Power Management
4. Resource Security¶
- Access Control
- Resource Isolation
- Usage Monitoring
- Security Policies
Implementation¶
1. Resource Configuration¶
interface ResourceConfig {
compute: ComputeConfig;
memory: MemoryConfig;
storage: StorageConfig;
network: NetworkConfig;
}
interface ComputeConfig {
allocation: AllocationStrategy;
limits: ResourceLimits;
scheduling: SchedulingPolicy;
}
enum AllocationStrategy {
STATIC = "static",
DYNAMIC = "dynamic",
HYBRID = "hybrid",
CUSTOM = "custom",
}
2. Resource Management¶
interface ResourceManager {
allocation: AllocationManager;
monitoring: MonitoringConfig;
optimization: OptimizationConfig;
}
interface AllocationManager {
strategy: string;
policies: Policy[];
constraints: ResourceConstraints;
}
interface MonitoringConfig {
metrics: string[];
interval: number;
alerts: AlertConfig[];
}
3. Workload Management¶
interface WorkloadManager {
scheduler: SchedulerConfig;
balancer: BalancerConfig;
monitor: MonitorConfig;
}
interface SchedulerConfig {
algorithm: string;
queue: QueueConfig;
priority: PriorityConfig;
}
interface BalancerConfig {
strategy: string;
thresholds: Thresholds;
actions: BalancerAction[];
}
Resource Allocation¶
1. Compute Management¶
interface ComputeManager {
allocation: CPUAllocation;
scheduling: TaskScheduling;
monitoring: PerformanceMonitoring;
}
interface CPUAllocation {
cores: number[];
affinity: AffinityConfig;
priority: PriorityLevels;
}
interface TaskScheduling {
algorithm: SchedulingAlgorithm;
queue: TaskQueue;
priority: PriorityQueue;
}
2. Memory Management¶
interface MemoryManager {
allocation: MemoryAllocation;
paging: PagingConfig;
caching: CacheConfig;
}
interface MemoryAllocation {
strategy: AllocationStrategy;
limits: MemoryLimits;
policies: MemoryPolicy[];
}
Integration Examples¶
1. Resource Allocation System¶
// Configure resource manager
const resourceManager = new ResourceManager({
compute: {
allocation: {
strategy: "dynamic",
cores: {
min: 2,
max: 8,
preferred: 4,
},
scheduling: {
algorithm: "fair-share",
quantum: 100,
},
},
limits: {
cpu: {
usage: 80,
temperature: 85,
},
memory: {
usage: 90,
swap: 50,
},
},
monitoring: {
interval: 1000,
metrics: ["cpu", "memory", "temperature"],
thresholds: {
cpu: 80,
memory: 90,
temperature: 85,
},
},
},
memory: {
allocation: {
strategy: "dynamic",
initial: "1GB",
maximum: "8GB",
},
paging: {
enabled: true,
size: "4KB",
policy: "lru",
},
caching: {
enabled: true,
size: "256MB",
policy: "lru",
},
},
});
// Allocate resources
const allocation = await resourceManager.allocate({
requirements: {
cpu: 2,
memory: "2GB",
priority: "high",
},
constraints: {
location: "local",
timeout: 30000,
},
});
2. Workload Management¶
// Configure workload manager
const workloadManager = new WorkloadManager({
scheduler: {
algorithm: "priority",
queues: [
{
name: "high",
priority: 3,
quantum: 100,
},
{
name: "medium",
priority: 2,
quantum: 200,
},
{
name: "low",
priority: 1,
quantum: 300,
},
],
preemption: {
enabled: true,
threshold: "high",
},
},
balancer: {
strategy: "least-loaded",
metrics: ["cpu", "memory", "network"],
thresholds: {
cpu: 80,
memory: 90,
network: 70,
},
interval: 5000,
},
monitoring: {
enabled: true,
interval: 1000,
metrics: ["cpu", "memory", "network", "queue"],
},
});
// Submit workload
const task = await workloadManager.submit({
type: "computation",
priority: "high",
resources: {
cpu: 2,
memory: "2GB",
},
constraints: {
deadline: Date.now() + 3600000,
location: "any",
},
});
3. Resource Optimization¶
// Configure resource optimizer
const resourceOptimizer = new ResourceOptimizer({
strategies: {
compute: {
type: "dynamic-scaling",
metrics: ["utilization", "performance"],
thresholds: {
scale_up: 80,
scale_down: 20,
},
},
memory: {
type: "adaptive-caching",
policy: "lru",
size: {
min: "256MB",
max: "1GB",
},
},
storage: {
type: "tiered",
tiers: [
{
type: "ssd",
size: "100GB",
priority: "high",
},
{
type: "hdd",
size: "1TB",
priority: "low",
},
],
},
},
monitoring: {
interval: 5000,
metrics: ["utilization", "performance", "efficiency"],
},
});
// Optimize resources
const optimization = await resourceOptimizer.optimize({
target: "performance",
constraints: {
power: "efficient",
cost: "minimal",
},
});
Performance Optimization¶
1. Resource Monitoring¶
interface ResourceMonitor {
metrics: MetricConfig[];
collection: CollectionConfig;
analysis: AnalysisConfig;
}
interface MetricConfig {
name: string;
type: MetricType;
interval: number;
aggregation: AggregationType;
}
2. Performance Tuning¶
interface PerformanceTuner {
policies: TuningPolicy[];
parameters: TuningParameter[];
optimization: OptimizationConfig;
}
Best Practices¶
1. Resource Allocation¶
- Implement proper limits
- Monitor usage patterns
- Handle resource conflicts
- Regular optimization
2. Performance¶
- Optimize allocation
- Balance workloads
- Monitor metrics
- Handle bottlenecks
3. Security¶
- Access control
- Resource isolation
- Usage monitoring
- Policy enforcement
Future Enhancements¶
-
Planned Features
-
Advanced scheduling
- Predictive scaling
- Resource analytics
-
Automated optimization
-
Research Areas
- Machine learning optimization
- Quantum resource management
- Edge computing resources
- Green computing