Robotics Integration Capabilities¶
Overview¶
AIDDDMAP's robotics integration system provides comprehensive capabilities for controlling, monitoring, and managing robotic systems. The platform supports various robot types, sensor integration, motion planning, and real-time control.
Core Features¶
1. Robot Control¶
- Motion Planning
- Trajectory Generation
- Inverse Kinematics
- Force Control
2. Sensing Systems¶
- Camera Integration
- LiDAR Processing
- Force/Torque Sensing
- Environmental Sensors
3. Navigation¶
- Path Planning
- SLAM Implementation
- Obstacle Avoidance
- Map Generation
4. Task Automation¶
- Task Planning
- Sequence Execution
- Error Recovery
- Safety Monitoring
Implementation¶
1. Robot Configuration¶
interface RobotConfig {
type: RobotType;
model: string;
controllers: ControllerConfig[];
sensors: SensorConfig[];
safety: SafetyConfig;
}
interface ControllerConfig {
type: ControllerType;
parameters: ControlParameters;
constraints: ControlConstraints;
}
enum RobotType {
MANIPULATOR = "manipulator",
MOBILE = "mobile",
COLLABORATIVE = "collaborative",
CUSTOM = "custom",
}
2. Motion Control¶
interface MotionController {
planning: PlanningConfig;
execution: ExecutionConfig;
monitoring: MonitoringConfig;
}
interface PlanningConfig {
algorithm: string;
constraints: MotionConstraints;
optimization: OptimizationParams;
}
interface ExecutionConfig {
mode: "position" | "velocity" | "torque";
control: ControlParams;
safety: SafetyChecks;
}
3. Sensor Processing¶
interface SensorProcessor {
sensors: SensorConfig[];
fusion: FusionConfig;
calibration: CalibrationConfig;
}
interface SensorConfig {
type: SensorType;
parameters: SensorParams;
processing: ProcessingConfig;
}
interface FusionConfig {
algorithm: string;
inputs: string[];
output: OutputConfig;
}
Robot Control¶
1. Motion Planning¶
interface MotionPlanner {
algorithm: PlanningAlgorithm;
constraints: PlanningConstraints;
optimization: OptimizationConfig;
}
interface PlanningConstraints {
joint: JointConstraints;
cartesian: CartesianConstraints;
dynamic: DynamicConstraints;
}
interface OptimizationConfig {
objective: string;
weights: number[];
constraints: OptConstraints[];
}
2. Task Execution¶
interface TaskExecutor {
sequence: TaskSequence;
monitoring: MonitorConfig;
recovery: RecoveryConfig;
}
interface TaskSequence {
tasks: Task[];
transitions: Transition[];
validation: ValidationConfig;
}
Integration Examples¶
1. Robot Control System¶
// Configure robot controller
const robotController = new RobotController({
robot: {
type: "manipulator",
model: "ur5e",
dof: 6,
},
control: {
mode: "position",
rate: 125,
interpolation: "cubic",
},
safety: {
limits: {
joint: {
position: [-Math.PI, Math.PI],
velocity: [-3.14, 3.14],
acceleration: [-10, 10],
},
cartesian: {
position: {
x: [-1, 1],
y: [-1, 1],
z: [0, 2],
},
orientation: {
rx: [-Math.PI, Math.PI],
ry: [-Math.PI, Math.PI],
rz: [-Math.PI, Math.PI],
},
},
},
collision: {
enabled: true,
margin: 0.1,
},
},
});
// Execute motion
const motion = await robotController.executeMotion({
type: "joint",
points: [
{ position: [0, -1.57, 1.57, -1.57, -1.57, 0] },
{ position: [1.57, -1.57, 1.57, -1.57, -1.57, 0] },
],
parameters: {
velocity: 0.5,
acceleration: 0.5,
},
});
2. Sensor Integration¶
// Configure sensor system
const sensorSystem = new SensorSystem({
sensors: [
{
type: "camera",
config: {
resolution: [1920, 1080],
fps: 30,
format: "rgb",
},
processing: {
calibration: true,
undistortion: true,
},
},
{
type: "lidar",
config: {
channels: 16,
range: 100,
frequency: 10,
},
processing: {
filtering: true,
registration: true,
},
},
{
type: "force",
config: {
axes: 6,
range: [-100, 100],
rate: 1000,
},
processing: {
filtering: true,
calibration: true,
},
},
],
fusion: {
algorithm: "kalman",
rate: 100,
alignment: true,
},
});
// Process sensor data
const sensorData = await sensorSystem.process({
timestamp: Date.now(),
requirements: {
camera: true,
lidar: true,
force: true,
},
});
3. Navigation System¶
// Configure navigation system
const navigator = new RobotNavigator({
mapping: {
type: "slam",
algorithm: "rtab-map",
resolution: 0.05,
},
planning: {
global: {
algorithm: "rrt*",
optimization: true,
},
local: {
algorithm: "dwa",
frequency: 20,
},
},
control: {
type: "differential",
parameters: {
maxVelocity: 1.0,
maxRotation: 1.0,
},
},
});
// Navigate to goal
const path = await navigator.planPath({
start: currentPose,
goal: targetPose,
constraints: {
clearance: 0.5,
maxTime: 30,
},
});
Performance Tuning and Optimization¶
interface PerformanceTuner {
policies: TuningPolicy[];
parameters: TuningParameter[];
optimization: OptimizationConfig;
}
Resource Management and Allocation¶
System Performance Guidelines¶
-
Real-time Control
-
Optimize control loops
- Manage resources efficiently
- Monitor timing constraints
-
Handle errors gracefully
-
Resource Optimization
-
Implement proper limits
- Monitor system state
- Handle emergencies
-
Regular validation
-
Integration Best Practices
- Proper calibration
- Sensor fusion
- Error handling
- System monitoring
Best Practices¶
1. Safety¶
- Implement proper limits
- Monitor system state
- Handle emergencies
- Regular validation
2. Performance¶
- Optimize control loops
- Manage resources
- Monitor timing
- Handle errors
3. Integration¶
- Proper calibration
- Sensor fusion
- Error handling
- System monitoring
Future Enhancements¶
-
Planned Features
-
Advanced path planning
- Learning from demonstration
- Multi-robot coordination
-
Cloud robotics integration
-
Research Areas
- Reinforcement learning
- Adaptive control
- Human-robot interaction
- Swarm robotics
Swarm Coordination¶
Swarm Coordination Overview¶
The SwarmCoordinator class provides robust capabilities for managing multiple robots in formation, handling their movement, and coordinating swarm-wide tasks.
Key Features¶
- Formation control with multiple shape options (line, triangle, square, custom)
- Dynamic robot addition and removal
- Encrypted communication between swarm members
- Real-time position updates and state management
Code Examples¶
Moving Robots in Formation¶
// Initialize the swarm coordinator
const config: SwarmConfig = {
teamSize: 3,
communicationRange: 10,
formationShape: "triangle",
encryptionEnabled: true,
};
const coordinator = new SwarmCoordinator(rosManager, config);
// Add robots to the swarm
await coordinator.addRobot("robot1", {
id: "robot1",
position: { x: 0, y: 0, theta: 0 },
velocity: { linear: 0, angular: 0 },
batteryLevel: 100,
status: "active",
});
// Update formation
await coordinator.updateFormation({
center: { x: 0, y: 0 },
orientation: 0,
shape: "triangle",
scale: 1.0,
});
Implementation Notes¶
- Robot movement is handled through the
moveRobotToPositionmethod which uses ROS navigation - Unused parameters in methods are prefixed with underscore (e.g.,
_robotId) following TypeScript best practices - Formation positions are calculated based on the selected shape and number of robots
- Error handling includes validation of robot existence and movement constraints
Swarm Coordination Best Practices¶
- Always initialize the swarm before adding robots
- Check swarm state after critical operations
- Handle cleanup properly when shutting down
- Follow the naming conventions for unused variables