Skip to content

Robotics Integration Capabilities

Overview

AIDDDMAP's robotics integration system provides comprehensive capabilities for controlling, monitoring, and managing robotic systems. The platform supports various robot types, sensor integration, motion planning, and real-time control.

Core Features

1. Robot Control

  • Motion Planning
  • Trajectory Generation
  • Inverse Kinematics
  • Force Control

2. Sensing Systems

  • Camera Integration
  • LiDAR Processing
  • Force/Torque Sensing
  • Environmental Sensors

3. Navigation

  • Path Planning
  • SLAM Implementation
  • Obstacle Avoidance
  • Map Generation

4. Task Automation

  • Task Planning
  • Sequence Execution
  • Error Recovery
  • Safety Monitoring

Implementation

1. Robot Configuration

interface RobotConfig {
  type: RobotType;
  model: string;
  controllers: ControllerConfig[];
  sensors: SensorConfig[];
  safety: SafetyConfig;
}

interface ControllerConfig {
  type: ControllerType;
  parameters: ControlParameters;
  constraints: ControlConstraints;
}

enum RobotType {
  MANIPULATOR = "manipulator",
  MOBILE = "mobile",
  COLLABORATIVE = "collaborative",
  CUSTOM = "custom",
}

2. Motion Control

interface MotionController {
  planning: PlanningConfig;
  execution: ExecutionConfig;
  monitoring: MonitoringConfig;
}

interface PlanningConfig {
  algorithm: string;
  constraints: MotionConstraints;
  optimization: OptimizationParams;
}

interface ExecutionConfig {
  mode: "position" | "velocity" | "torque";
  control: ControlParams;
  safety: SafetyChecks;
}

3. Sensor Processing

interface SensorProcessor {
  sensors: SensorConfig[];
  fusion: FusionConfig;
  calibration: CalibrationConfig;
}

interface SensorConfig {
  type: SensorType;
  parameters: SensorParams;
  processing: ProcessingConfig;
}

interface FusionConfig {
  algorithm: string;
  inputs: string[];
  output: OutputConfig;
}

Robot Control

1. Motion Planning

interface MotionPlanner {
  algorithm: PlanningAlgorithm;
  constraints: PlanningConstraints;
  optimization: OptimizationConfig;
}

interface PlanningConstraints {
  joint: JointConstraints;
  cartesian: CartesianConstraints;
  dynamic: DynamicConstraints;
}

interface OptimizationConfig {
  objective: string;
  weights: number[];
  constraints: OptConstraints[];
}

2. Task Execution

interface TaskExecutor {
  sequence: TaskSequence;
  monitoring: MonitorConfig;
  recovery: RecoveryConfig;
}

interface TaskSequence {
  tasks: Task[];
  transitions: Transition[];
  validation: ValidationConfig;
}

Integration Examples

1. Robot Control System

// Configure robot controller
const robotController = new RobotController({
  robot: {
    type: "manipulator",
    model: "ur5e",
    dof: 6,
  },
  control: {
    mode: "position",
    rate: 125,
    interpolation: "cubic",
  },
  safety: {
    limits: {
      joint: {
        position: [-Math.PI, Math.PI],
        velocity: [-3.14, 3.14],
        acceleration: [-10, 10],
      },
      cartesian: {
        position: {
          x: [-1, 1],
          y: [-1, 1],
          z: [0, 2],
        },
        orientation: {
          rx: [-Math.PI, Math.PI],
          ry: [-Math.PI, Math.PI],
          rz: [-Math.PI, Math.PI],
        },
      },
    },
    collision: {
      enabled: true,
      margin: 0.1,
    },
  },
});

// Execute motion
const motion = await robotController.executeMotion({
  type: "joint",
  points: [
    { position: [0, -1.57, 1.57, -1.57, -1.57, 0] },
    { position: [1.57, -1.57, 1.57, -1.57, -1.57, 0] },
  ],
  parameters: {
    velocity: 0.5,
    acceleration: 0.5,
  },
});

2. Sensor Integration

// Configure sensor system
const sensorSystem = new SensorSystem({
  sensors: [
    {
      type: "camera",
      config: {
        resolution: [1920, 1080],
        fps: 30,
        format: "rgb",
      },
      processing: {
        calibration: true,
        undistortion: true,
      },
    },
    {
      type: "lidar",
      config: {
        channels: 16,
        range: 100,
        frequency: 10,
      },
      processing: {
        filtering: true,
        registration: true,
      },
    },
    {
      type: "force",
      config: {
        axes: 6,
        range: [-100, 100],
        rate: 1000,
      },
      processing: {
        filtering: true,
        calibration: true,
      },
    },
  ],
  fusion: {
    algorithm: "kalman",
    rate: 100,
    alignment: true,
  },
});

// Process sensor data
const sensorData = await sensorSystem.process({
  timestamp: Date.now(),
  requirements: {
    camera: true,
    lidar: true,
    force: true,
  },
});

3. Navigation System

// Configure navigation system
const navigator = new RobotNavigator({
  mapping: {
    type: "slam",
    algorithm: "rtab-map",
    resolution: 0.05,
  },
  planning: {
    global: {
      algorithm: "rrt*",
      optimization: true,
    },
    local: {
      algorithm: "dwa",
      frequency: 20,
    },
  },
  control: {
    type: "differential",
    parameters: {
      maxVelocity: 1.0,
      maxRotation: 1.0,
    },
  },
});

// Navigate to goal
const path = await navigator.planPath({
  start: currentPose,
  goal: targetPose,
  constraints: {
    clearance: 0.5,
    maxTime: 30,
  },
});

Performance Tuning and Optimization

interface PerformanceTuner {
  policies: TuningPolicy[];
  parameters: TuningParameter[];
  optimization: OptimizationConfig;
}

Resource Management and Allocation

interface ResourceManager {
  cpu: CPUConfig;
  memory: MemoryConfig;
  network: NetworkConfig;
}

System Performance Guidelines

  1. Real-time Control

  2. Optimize control loops

  3. Manage resources efficiently
  4. Monitor timing constraints
  5. Handle errors gracefully

  6. Resource Optimization

  7. Implement proper limits

  8. Monitor system state
  9. Handle emergencies
  10. Regular validation

  11. Integration Best Practices

  12. Proper calibration
  13. Sensor fusion
  14. Error handling
  15. System monitoring

Best Practices

1. Safety

  • Implement proper limits
  • Monitor system state
  • Handle emergencies
  • Regular validation

2. Performance

  • Optimize control loops
  • Manage resources
  • Monitor timing
  • Handle errors

3. Integration

  • Proper calibration
  • Sensor fusion
  • Error handling
  • System monitoring

Future Enhancements

  1. Planned Features

  2. Advanced path planning

  3. Learning from demonstration
  4. Multi-robot coordination
  5. Cloud robotics integration

  6. Research Areas

  7. Reinforcement learning
  8. Adaptive control
  9. Human-robot interaction
  10. Swarm robotics

Swarm Coordination

Swarm Coordination Overview

The SwarmCoordinator class provides robust capabilities for managing multiple robots in formation, handling their movement, and coordinating swarm-wide tasks.

Key Features

  • Formation control with multiple shape options (line, triangle, square, custom)
  • Dynamic robot addition and removal
  • Encrypted communication between swarm members
  • Real-time position updates and state management

Code Examples

Moving Robots in Formation

// Initialize the swarm coordinator
const config: SwarmConfig = {
  teamSize: 3,
  communicationRange: 10,
  formationShape: "triangle",
  encryptionEnabled: true,
};
const coordinator = new SwarmCoordinator(rosManager, config);

// Add robots to the swarm
await coordinator.addRobot("robot1", {
  id: "robot1",
  position: { x: 0, y: 0, theta: 0 },
  velocity: { linear: 0, angular: 0 },
  batteryLevel: 100,
  status: "active",
});

// Update formation
await coordinator.updateFormation({
  center: { x: 0, y: 0 },
  orientation: 0,
  shape: "triangle",
  scale: 1.0,
});

Implementation Notes

  • Robot movement is handled through the moveRobotToPosition method which uses ROS navigation
  • Unused parameters in methods are prefixed with underscore (e.g., _robotId) following TypeScript best practices
  • Formation positions are calculated based on the selected shape and number of robots
  • Error handling includes validation of robot existence and movement constraints

Swarm Coordination Best Practices

  1. Always initialize the swarm before adding robots
  2. Check swarm state after critical operations
  3. Handle cleanup properly when shutting down
  4. Follow the naming conventions for unused variables