Skip to content

Vision Capabilities

Overview

AIDDDMAP's vision system provides advanced computer vision capabilities for processing, analyzing, and understanding visual data. The system supports real-time object detection, scene segmentation, facial analysis, and custom vision models.

Core Features

1. Object Detection

  • Real-time object detection and tracking
  • Multiple object class support
  • Confidence scoring
  • Bounding box generation

2. Scene Segmentation

  • Semantic segmentation
  • Instance segmentation
  • Panoptic segmentation
  • Depth estimation

3. Facial Analysis

  • Face detection
  • Facial landmark detection
  • Expression analysis
  • Identity verification

4. Custom Vision Models

  • Model training interface
  • Transfer learning support
  • Model optimization
  • Deployment management

Implementation

1. Vision Configuration

interface VisionConfig {
  mode: VisionMode;
  models: ModelConfig[];
  processing: ProcessingConfig;
  output: OutputConfig;
}

interface ModelConfig {
  type: ModelType;
  weights: string;
  confidence: number;
  acceleration?: "CPU" | "GPU" | "NPU";
}

enum ModelType {
  DETECTION = "detection",
  SEGMENTATION = "segmentation",
  FACIAL = "facial",
  CUSTOM = "custom",
}

2. Object Detection

interface DetectionConfig {
  model: "yolov8" | "ssd" | "faster-rcnn";
  classes: string[];
  threshold: number;
  tracking?: TrackingConfig;
}

interface DetectionResult {
  objects: DetectedObject[];
  frame: number;
  timestamp: number;
  metadata: DetectionMetadata;
}

interface DetectedObject {
  class: string;
  confidence: number;
  bbox: BoundingBox;
  tracking?: TrackingInfo;
}

3. Segmentation

interface SegmentationConfig {
  type: "semantic" | "instance" | "panoptic";
  model: string;
  classes: string[];
  resolution: {
    width: number;
    height: number;
  };
}

interface SegmentationResult {
  masks: Mask[];
  classes: string[];
  scores: number[];
  metadata: SegmentationMetadata;
}

Vision Pipeline

1. Input Processing

interface InputProcessor {
  source: ImageSource;
  preprocessing: PreprocessingStep[];
  validation: ValidationRule[];
}

interface PreprocessingStep {
  operation: "resize" | "normalize" | "augment";
  parameters: any;
}

2. Model Inference

interface InferenceEngine {
  model: VisionModel;
  batch: BatchConfig;
  acceleration: AccelerationConfig;
}

interface VisionModel {
  architecture: string;
  weights: string;
  config: ModelConfig;
  optimization: OptimizationConfig;
}

3. Post-processing

interface PostProcessor {
  operations: PostProcessingOp[];
  filters: FilterConfig[];
  output: OutputFormat;
}

interface PostProcessingOp {
  type: string;
  parameters: any;
  order: number;
}

Integration Examples

1. Real-time Object Detection

// Configure real-time detection
const detector = new ObjectDetector({
  model: {
    type: "yolov8",
    weights: "yolov8n.pt",
    confidence: 0.5,
  },
  tracking: {
    enabled: true,
    algorithm: "sort",
    maxAge: 30,
  },
  processing: {
    width: 640,
    height: 640,
    fps: 30,
    batchSize: 1,
  },
  output: {
    format: "bbox",
    include: ["class", "confidence", "trajectory"],
  },
});

// Process video stream
const stream = await detector.processStream({
  source: videoStream,
  callback: (results) => {
    for (const obj of results.objects) {
      console.log(`Detected ${obj.class} with confidence ${obj.confidence}`);
    }
  },
});

2. Scene Understanding

// Configure scene analysis
const sceneAnalyzer = new SceneAnalyzer({
  segmentation: {
    type: "panoptic",
    model: "mask2former",
    classes: ["person", "car", "building", "road"],
  },
  depth: {
    enabled: true,
    model: "midas",
  },
  relationships: {
    enabled: true,
    maxObjects: 10,
  },
});

// Analyze scene
const analysis = await sceneAnalyzer.analyze({
  image: inputImage,
  requirements: {
    segmentation: true,
    depth: true,
    relationships: true,
  },
});

3. Custom Model Training

// Configure model training
const trainer = new VisionModelTrainer({
  architecture: {
    type: "detection",
    backbone: "resnet50",
    heads: ["bbox", "class"],
  },
  dataset: {
    train: trainDataset,
    val: valDataset,
    augmentation: {
      horizontal_flip: 0.5,
      rotation: 15,
      color_jitter: true,
    },
  },
  training: {
    epochs: 100,
    batchSize: 16,
    optimizer: {
      type: "adam",
      lr: 0.001,
    },
    scheduler: {
      type: "cosine",
      warmup: 5,
    },
  },
});

// Train model
const model = await trainer.train({
  checkpointing: {
    enabled: true,
    interval: 10,
  },
  validation: {
    interval: 5,
    metrics: ["mAP", "recall"],
  },
});

Performance Optimization

1. Hardware Acceleration

interface AccelerationConfig {
  device: "CPU" | "GPU" | "NPU";
  precision: "FP32" | "FP16" | "INT8";
  batchSize: number;
  threads: number;
}

2. Model Optimization

interface OptimizationConfig {
  quantization: QuantizationConfig;
  pruning: PruningConfig;
  distillation: DistillationConfig;
}

Best Practices

1. Model Selection

  • Choose appropriate architectures
  • Consider hardware constraints
  • Balance accuracy and speed
  • Regular model updates

2. Data Processing

  • Proper preprocessing
  • Robust augmentation
  • Efficient batching
  • Error handling

3. Deployment

  • Model optimization
  • Resource management
  • Monitoring
  • Version control

Future Enhancements

  1. Planned Features

  2. 3D scene understanding

  3. Multi-camera fusion
  4. Advanced tracking
  5. Real-time optimization

  6. Research Areas

  7. Few-shot learning
  8. Self-supervised learning
  9. Neural architecture search
  10. Edge deployment