Vision Capabilities¶
Overview¶
AIDDDMAP's vision system provides advanced computer vision capabilities for processing, analyzing, and understanding visual data. The system supports real-time object detection, scene segmentation, facial analysis, and custom vision models.
Core Features¶
1. Object Detection¶
- Real-time object detection and tracking
- Multiple object class support
- Confidence scoring
- Bounding box generation
2. Scene Segmentation¶
- Semantic segmentation
- Instance segmentation
- Panoptic segmentation
- Depth estimation
3. Facial Analysis¶
- Face detection
- Facial landmark detection
- Expression analysis
- Identity verification
4. Custom Vision Models¶
- Model training interface
- Transfer learning support
- Model optimization
- Deployment management
Implementation¶
1. Vision Configuration¶
interface VisionConfig {
mode: VisionMode;
models: ModelConfig[];
processing: ProcessingConfig;
output: OutputConfig;
}
interface ModelConfig {
type: ModelType;
weights: string;
confidence: number;
acceleration?: "CPU" | "GPU" | "NPU";
}
enum ModelType {
DETECTION = "detection",
SEGMENTATION = "segmentation",
FACIAL = "facial",
CUSTOM = "custom",
}
2. Object Detection¶
interface DetectionConfig {
model: "yolov8" | "ssd" | "faster-rcnn";
classes: string[];
threshold: number;
tracking?: TrackingConfig;
}
interface DetectionResult {
objects: DetectedObject[];
frame: number;
timestamp: number;
metadata: DetectionMetadata;
}
interface DetectedObject {
class: string;
confidence: number;
bbox: BoundingBox;
tracking?: TrackingInfo;
}
3. Segmentation¶
interface SegmentationConfig {
type: "semantic" | "instance" | "panoptic";
model: string;
classes: string[];
resolution: {
width: number;
height: number;
};
}
interface SegmentationResult {
masks: Mask[];
classes: string[];
scores: number[];
metadata: SegmentationMetadata;
}
Vision Pipeline¶
1. Input Processing¶
interface InputProcessor {
source: ImageSource;
preprocessing: PreprocessingStep[];
validation: ValidationRule[];
}
interface PreprocessingStep {
operation: "resize" | "normalize" | "augment";
parameters: any;
}
2. Model Inference¶
interface InferenceEngine {
model: VisionModel;
batch: BatchConfig;
acceleration: AccelerationConfig;
}
interface VisionModel {
architecture: string;
weights: string;
config: ModelConfig;
optimization: OptimizationConfig;
}
3. Post-processing¶
interface PostProcessor {
operations: PostProcessingOp[];
filters: FilterConfig[];
output: OutputFormat;
}
interface PostProcessingOp {
type: string;
parameters: any;
order: number;
}
Integration Examples¶
1. Real-time Object Detection¶
// Configure real-time detection
const detector = new ObjectDetector({
model: {
type: "yolov8",
weights: "yolov8n.pt",
confidence: 0.5,
},
tracking: {
enabled: true,
algorithm: "sort",
maxAge: 30,
},
processing: {
width: 640,
height: 640,
fps: 30,
batchSize: 1,
},
output: {
format: "bbox",
include: ["class", "confidence", "trajectory"],
},
});
// Process video stream
const stream = await detector.processStream({
source: videoStream,
callback: (results) => {
for (const obj of results.objects) {
console.log(`Detected ${obj.class} with confidence ${obj.confidence}`);
}
},
});
2. Scene Understanding¶
// Configure scene analysis
const sceneAnalyzer = new SceneAnalyzer({
segmentation: {
type: "panoptic",
model: "mask2former",
classes: ["person", "car", "building", "road"],
},
depth: {
enabled: true,
model: "midas",
},
relationships: {
enabled: true,
maxObjects: 10,
},
});
// Analyze scene
const analysis = await sceneAnalyzer.analyze({
image: inputImage,
requirements: {
segmentation: true,
depth: true,
relationships: true,
},
});
3. Custom Model Training¶
// Configure model training
const trainer = new VisionModelTrainer({
architecture: {
type: "detection",
backbone: "resnet50",
heads: ["bbox", "class"],
},
dataset: {
train: trainDataset,
val: valDataset,
augmentation: {
horizontal_flip: 0.5,
rotation: 15,
color_jitter: true,
},
},
training: {
epochs: 100,
batchSize: 16,
optimizer: {
type: "adam",
lr: 0.001,
},
scheduler: {
type: "cosine",
warmup: 5,
},
},
});
// Train model
const model = await trainer.train({
checkpointing: {
enabled: true,
interval: 10,
},
validation: {
interval: 5,
metrics: ["mAP", "recall"],
},
});
Performance Optimization¶
1. Hardware Acceleration¶
interface AccelerationConfig {
device: "CPU" | "GPU" | "NPU";
precision: "FP32" | "FP16" | "INT8";
batchSize: number;
threads: number;
}
2. Model Optimization¶
interface OptimizationConfig {
quantization: QuantizationConfig;
pruning: PruningConfig;
distillation: DistillationConfig;
}
Best Practices¶
1. Model Selection¶
- Choose appropriate architectures
- Consider hardware constraints
- Balance accuracy and speed
- Regular model updates
2. Data Processing¶
- Proper preprocessing
- Robust augmentation
- Efficient batching
- Error handling
3. Deployment¶
- Model optimization
- Resource management
- Monitoring
- Version control
Future Enhancements¶
-
Planned Features
-
3D scene understanding
- Multi-camera fusion
- Advanced tracking
-
Real-time optimization
-
Research Areas
- Few-shot learning
- Self-supervised learning
- Neural architecture search
- Edge deployment